检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵兰兰 赵兵 洪博 石朋[4] ZHAO Lanlan;ZHAO Bing;HONG Bo;SHI Peng(Information Center(Hydrology Monitor and Forecast Center),MWR,Beijing,100053,China;Administration Bureau of Nanwan Reservoir of Xinyang,Xinyang Henan,464031,China;Hydrology and Water Resource Monitoring Center of Xiuhe River,Jiujiang Jiangxi,332001,China;College of Hydrology and Water Resource,Hohai University,Nanjing Jiangsu,210098,China)
机构地区:[1]水利部信息中心(水文水资源监测预报中心),北京100053 [2]信阳市南湾水库管理局,河南信阳464031 [3]修河水文水资源监测中心,江西九江332001 [4]河海大学水文水资源学院,江苏南京210098
出 处:《江西水利科技》2023年第4期271-276,共6页Jiangxi Hydraulic Science & Technology
基 金:国家自然科学基金(52179011)。
摘 要:以江西婺源地区为研究区域,选取新安江模型、BP神经网络模型、基于土壤水动力学的洪水预报模型和GR3模型,对2017年以来18场洪水分别进行模拟,并从确定性系数、场次洪水合格率等方面进行综合比较分析。结果表明:4种模型在婺源地区效果均较好,平均确定性系数均超过0.8,其中以BP神经网络模型0.977为最高;场次洪水合格率均超过60%,新安江模型和GR3模型洪水过程模拟效果相当。在实际预报中可采用多模型相结合的方式进行综合分析,进而提升洪水预报精度。Taking Wuyuan county of Jiangxi province as the research area,this paper selects Xin'anjiang model,flood forecast model based on soil hydrodynamics,GR3 model and BP model to simulate the 18 flood events since 2017 and then makes a comprehensive comparative analysis in terms of their certainty coefficients and passing rates of the events.The results show that all the four models can provide reasonable results in Wuyuan region with the average certainty coefficient exceeding 0.80,especially BP model is the highest as 0.977.Their qualified rates all exceed 60%and the simulation results are similar between GR3 model and Xin'anjiang model.In order to improve the accuracy of flood forecasting in actual flood forecast,it is advisable to apply multi-models to make comprehensive analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229