苹果采摘机器人目标识别与定位方法研究  被引量:4

在线阅读下载全文

作  者:黄明辉 程忠 

机构地区:[1]长安大学工程机械学院,陕西西安710064

出  处:《南方农机》2023年第16期135-138,共4页

摘  要:【目的】在算力资源有限的嵌入式设备上对目标苹果进行快速、准确的识别与定位。【方法】研究小组对采摘机器人的目标识别与定位方法进行研究,以YOLOv4网络模型为基础,对YOLOv4进行轻量化改进,使用MobileNet V3作为特征提取的主干网络,减少模型的计算量,并结合ZED双目相机与定位算法在嵌入式平台上进行实验。【结果】实验表明:1)在目标识别方面,改进后模型的平均检测精度为87.32%,模型的大小为53.76 MB,较改进前降低了79%。2)采用ZED相机结合测距算法进行了苹果目标定位实验,ZED双目相机的测距误差可控制在0.02 m以内,同时改进的YOLOv4算法的平均检测速度在15FPS左右。【结论】改进后的YOLOv4网络模型更适合部署在算力有限的嵌入式设备中进行苹果采摘任务,且能够满足苹果采摘任务的实时性要求。因此,该方法可以为苹果采摘机器人的识别与定位提供技术参考。

关 键 词:苹果 识别与定位 YOLOv4 轻量化 ZED双目相机 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象