检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张艺超 郑向涛[1,3] 卢孝强 ZHANG Yichao;ZHENG Xiangtao;LU Xiaoqiang(Key Laboratory of Spectral Imaging Technology CAS,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China;University of Chinese Academy of Sciences,Beijing 100049,China;College of Physics and Information Engineering,Fuzhou University,Fuzhou 350100,China)
机构地区:[1]中国科学院西安光学精密机械研究所光谱成像技术重点实验室,陕西西安710119 [2]中国科学院大学,北京100049 [3]福州大学物理与信息工程学院,福建福州350100
出 处:《测绘学报》2023年第7期1139-1147,共9页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(62271484);国家杰出青年科学基金(61925112);陕西省重点研发计划(2023-YBGY-225)。
摘 要:高光谱图像分类将每个像素分类至预设的地物类别,对环境测绘等各类地球科学任务有着至关重要的意义。近年来,学者们尝试利用深度学习框架进行高光谱图像分类,取得了令人满意的效果。然而这些方法在光谱特征的提取上仍存在一定缺陷。本文提出一个基于自注意力机制的层级融合高光谱图像分类框架(hierarchical self-attention network,HSAN)。首先,构建跳层自注意力模块进行特征学习,利用Transformer结构中的自注意力机制捕获上下文信息,增强有效信息贡献。然后,设计层级融合方式,进一步缓解特征学习过程中的有效信息损失,增强各层级特征联动。在Pavia University及Houston2013数据集上的试验表明,本文提出的框架相较于其他高光谱图像分类框架具有更好的分类性能。Hyperspectral image classification,which assigns each pixel to predefined land cover categories,is of crucial importance in various Earth science tasks such as environmental mapping and other related fields.In recent years,scholars have attempted to utilize deep learning frameworks for hyperspectral image classification and achieved satisfactory results.However,these methods still have certain deficiencies in extracting spectral features.This paper proposes a hierarchical self-attention network(HSAN)for hyperspectral image classification based on the self-attention mechanism.Firstly,a skip-layer self-attention module is constructed for feature learning,leveraging the self-attention mechanism of Transformer to capture contextual information and enhance the contribution of relevant information.Secondly,a hierarchical fusion method is designed to further alleviate the loss of relevant information during the feature learning process and enhance the interplay of features at different hierarchical levels.Experimental results on the Pavia University and Houston2013 datasets demonstrate that the proposed framework outperforms other state-of-the-art hyperspectral image classification frameworks.
关 键 词:高光谱图像分类 TRANSFORMER 自注意力机制 层级融合
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15