检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李正欣 刘畅 吴诗辉[1] 郭建胜[1] LI Zhengxin;LIU Chang;WU Shihui;GUO Jiansheng(Equipment Management and Unmanned Aerial Vehicle Engineering College,Air Force Engineering University,Xi’an 710051,China)
机构地区:[1]空军工程大学装备管理与无人机工程学院,西安710051
出 处:《北京航空航天大学学报》2023年第7期1593-1599,共7页Journal of Beijing University of Aeronautics and Astronautics
摘 要:常用的时间序列模式匹配方法难以平衡计算复杂度与匹配精度,针对该问题,提出了一种特征点分段提取的时间序列模式匹配方法。提取时间序列每个变量维度上的特征点,降低序列长度;将特征点序列转化为分位点矩阵,利用欧氏距离对分位点矩阵进行相似性度量;在几组时间序列数据集上对所提方法进行分类实验。结果表明:所提方法在降低计算复杂度的同时,获得了较高的匹配精度。It is difficult for the common time series pattern matching methods to balance the computational complexity and matching accuracy.To solve this problem,a time series matching method based on segmented extraction of feature points is proposed.Firstly,the feature points on each variable dimension of the time series are extracted and the sequence length is compressed.Then,the quantile matrix is calculated according to the feature sequence,and the similarity of the quantile matrix is measured by Euclidean distance.Finally,the effectiveness of the proposed method is verified on the application data set.Experimental results show that the proposed method can effectively reduce the computational complexity and ensure high matching accuracy.
关 键 词:时间序列 模式匹配 特征提取 分位点矩阵 计算复杂度
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.218.250