一类具有导数型非线性项的弱耦合半线性双波动系统解的爆破  

Blow-up of solutions to a class of weakly coupled semilinear double-wave systems with nonlinear terms of derivative type

在线阅读下载全文

作  者:欧阳柏平 OUYANG Baiping(School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)

机构地区:[1]广州华商学院数据科学学院,广州511300

出  处:《华东师范大学学报(自然科学版)》2023年第4期24-34,共11页Journal of East China Normal University(Natural Science)

基  金:广东省普通高校重点项目(2019KZDXM042);广东省普通高校创新团队项目(2020WCXTD008);广东财经大学华商学院校内项目(2020HSDS01);广州华商学院科研团队项目(2021HSKT01)。

摘  要:考虑了一类具有导数型非线性项的弱耦合半线性双波动系统解的爆破现象.通过选择合适的泛函以及运用迭代方法,对p≠q时的弱耦合现象进行了深入研究,当p=q时退化为单个导数型半线性双波动方程,证明了非临界情况下其柯西问题解的全局非存在性.同时,导出了其解的生命跨度上界估计.In this paper,blow-up of solutions to a class of weakly coupled semilinear double-wave systems with nonlinear terms of derivative type is considered.By choosing suitable functionals and using an p̸=qiteration technique,the weakly coupled phenomena are studied in-depth for the case when.For the p=qcase when,the solution is degenerated to a single semilinear double-wave equation with a nonlinear term of derivative type.Furthermore,the nonexistence of global solutions to the Cauchy problem in the subcritical case is proven.Meanwhile,the upper bound estimate of the lifespan of solutions is also derived.

关 键 词:导数型非线性项 弱耦合半线性双波动系统 爆破 生命跨度 

分 类 号:O175.4[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象