基于用户长短期偏好和音乐情感注意力的音乐推荐模型  

A Music Recommendation Model Based on Users'Long and Short Term Preferences and Music Emotional Attention

在线阅读下载全文

作  者:吴亚迪 陈平华[1] Wu Ya-di;Chen Ping-hua(School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China)

机构地区:[1]广东工业大学计算机学院,广东广州510006

出  处:《广东工业大学学报》2023年第4期37-44,共8页Journal of Guangdong University of Technology

基  金:广东省重点领域研发计划项目(2021B0101200002,2020B0101100001);广东省科技计划项目(2020B1010010010)。

摘  要:针对现有音乐推荐在用户偏好建模时忽略用户长期偏好,或对用户记录统一建模时忽略历史信息与当前情境联系的问题,提出一种基于用户长短期偏好和音乐情感注意力的音乐推荐模型。首先将用户听歌记录切分为多个历史序列和当前序列,利用多个长短期记忆网络分别进行特征提取,得到用户长短期偏好:对于历史音乐序列,提出序列时段的概念,并进行序列时段加权计算,得到长期偏好;对于当前序列,利用平均池化提取当前情景音乐特征,得到短期偏好。其次,从音乐声学信号中学习音乐情感特征,应用注意力机制计算音乐情感因子。最后,将音乐情感因子融入用户长短期偏好,得到一个音乐推荐列表。在Last.fm真实数据集上的实验结果表明,模型的NDCG@10达到了0.5435,优于现有方法;消融实验和特征贡献分析进一步验证了模型的有效性。Users'long-term preferences and the relationship between historical information and current situation are usually ignored in existing user preference modeling and user record unified modeling.To address this,in this paper,we propose a music recommendation model based on users'long-term and short-term preferences and music emotional attention.Firstly,we divide the user's listening record into multiple historical and current sequences,and learn the features by multiple long and short-term memory networks,respectively,to obtain user's long and shortterm preferences.For the historical music sequences,we propose the concept of sequence period is proposed to obtain the long-term preferences by calculating the weights of the sequence period.For the current sequence,we use the average pooling to extract the music features of the current scene to obtain the short-term preference.Secondly,we learn the emotional characteristics of music from the acoustic signals,and use the attention mechanism to calculate the emotional factors of music.Finally,we integrate the music emotion factor into the user's long-term and short-term preference to generate a music recommendation list.The experimental results on the last.fm real data set show that the proposed model achieves 0.5435 in term of the NDCG@10,which is better than the existing methods.The ablation experiment and characteristic contribution analysis further demonstrate the effectiveness of the model.

关 键 词:音乐推荐 用户偏好 音乐情感 长短期记忆网络 注意力机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象