检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄晓湧 李伟彤[1] Huang Xiao-yong;Li Wei-tong(School of Information and Engineering,Guangdong University of Technology,Guangzhou 510006,China)
机构地区:[1]广东工业大学信息工程学院,广东广州510006
出 处:《广东工业大学学报》2023年第4期53-59,共7页Journal of Guangdong University of Technology
基 金:广东省科技计划项目(2017A010101016)。
摘 要:跌倒行为会给老人特别独居老人带来严重伤害,准确识别跌倒并及时报警可以有效降低这种危险。本文提出一种基于树结构骨架图像(Tree Structure Skeleton Image,TSSI)和可学习时空块卷积神经网络(Spatio-temporal Block Convolution Neural Network,STB-CNN)的跌倒检测方法。首先使用三维姿态估计算法提取人体关节点,进而获得骨架序列;然后利用基于深度优先搜索(Depth First Search,DFS)算法将骨架序列编码为TSSI;最后构建由时空差分模块、可学习时空框架和时空多分支卷积模块组成的可学习STB-CNN网络,实现跌倒检测。该方法在公开数据集和自建数据集上进行仿真实验分别取得98.6%和98.3%的准确率,优于其他相关算法。Falling behavior will bring serious injury to the elderly,especially to the elderly living alone.How to correctly identify the falling behavior and issue a warning is an important factor for reducing the injury.A fall detection algorithm is proposed,which is based on TSSI(tree structure skeleton image)and learnable STB-CNN(spatio-temporal block convolutional neural network).Firstly,human joint point is extracted by the threedimensional pose estimation algorithm,and the corresponding skeleton sequence can be obtained.Secondly,the skeleton sequence is encoded into TSSI by the algorithm based DFS(depth first search)method.Finally,a learnable STB-CNN is proposed to classify TSSI and detect the fall behavior,which consists of spatio-temporal difference module,learnable spatio-temporal framework and spatio-temporal multi-branch convolution module,.Experiments are carried out on the public datasets UR FALL Detection Datasets and the simulation datasets.Experimental results are shown that our fall detection algorithm is more accurate than other related algorithms,especially the accuracy to 98.6%and 98.3%respectively.
关 键 词:跌倒检测 树结构骨架图像 可学习时空块卷积神经网络 姿态估计
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51