Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis  被引量:1

在线阅读下载全文

作  者:Qiankun Zuo Junhua Hu Yudong Zhang Junren Pan Changhong Jing Xuhang Chen Xiaobo Meng Jin Hong 

机构地区:[1]School of Information Engineering,Hubei University of Economics,Wuhan,430205,China [2]State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing,100038,China [3]School of Computing and Mathematic Sciences,University of Leicester,Leicester,LE17RH,UK [4]Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China [5]Faculty of Science and Technology,University of Macao,Macao,999078,China [6]School of Geophysics,Chengdu University of Technology,Chengdu,610059,China [7]Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases,Guangdong Provincial Key Laboratory of South China Structural Heart Disease,Guangdong Provincial People’s Hospital(Guangdong Academy of Medical Sciences),Southern Medical University,Guangzhou,519041,China [8]Medical Research Institute,Guangdong Provincial People’s Hospital(Guangdong Academy of Medical Sciences),Southern Medical University,Guangzhou,519041,China

出  处:《Computer Modeling in Engineering & Sciences》2023年第12期2129-2147,共19页工程与科学中的计算机建模(英文)

基  金:This paper is partially supported by the British Heart Foundation Accelerator Award,UK(AA\18\3\34220);Royal Society International Exchanges Cost Share Award,UK(RP202G0230);Hope Foundation for Cancer Research,UK(RM60G0680);Medical Research Council Confidence in Concept Award,UK(MC_PC_17171);Sino-UK Industrial Fund,UK(RP202G0289);Global Challenges Research Fund(GCRF),UK(P202PF11);LIAS Pioneering Partnerships Award,UK(P202ED10);Data Science Enhancement Fund,UK(P202RE237);Fight for Sight,UK(24NN201);Sino-UK Education Fund,UK(OP202006);Biotechnology and Biological Sciences Research Council,UK(RM32G0178B8);LIAS Seed Corn,UK(P202RE969).

摘  要:The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks.

关 键 词:Adversarial graph encoder label distribution generative transformer functional brain connectivity graph convolutional network DEMENTIA 

分 类 号:TP391.5[自动化与计算机技术—计算机应用技术] R749[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象