社区结构对在线口碑信息传播的影响研究  

Research on the influence of community structure on online word-of-Mouth information dissemination

在线阅读下载全文

作  者:李园伟 陈运昌 Li Yuanwei;Chen Yunchang(Information technology center,Shandong TV University,Ji’nan 250000,China;School of Information Engineering,Ningxia University,Yinchuan 750000,China)

机构地区:[1]山东开放大学信息技术中心,济南250000 [2]宁夏大学信息工程学院,银川750000

出  处:《现代计算机》2023年第12期27-31,64,共6页Modern Computer

摘  要:社区结构作为社交网络普遍具有的一个重要拓扑特性,研究网络社区结构对在线口碑信息传播过程的影响具有重要意义。通过构建融合SIR传染病模型和Deffuant观点交互模型的在线口碑信息传播模型——De-SHIR模型,对在线口碑信息传播过程进行研究;同时利用LFR算法生成具有不同社区结构的社交网络,进行多Agent建模仿真,探究平均度、混合参数、社区规模等社区结构内部特性对在线口碑信息传播的影响。仿真结果表明:在节点总数相同的情况下,网络平均度、混合参数以及社区规模均与在线口碑信息传播效果呈正相关,即社区结构对在线口碑信息的传播具有明显的抑制作用。Community structure is an important topological characteristic of social networks.It is of great significance to study the influence of network community structure on the process of online word-of-mouth information dissemination.Based on this,an online word-of-mouth information dissemination model,De-SHIR model,which integrates the SIR infectious disease model and the Deffuant opinion interaction model,is constructed to analyze the online word-of-mouth information dissemination process.The LFR algorithm is used to generate social networks with different community structures,and through multi-agent modeling and simulation,the influence of the internal characteristics of the community structure such as average degree,mixing parameters and community size on the dissemination of online word-of-mouth information is explored.The simulation results show that:when the total number of nodes is the same,the network average degree,mixing parameters and community size are positively correlated with the online word-of-mouth information dissemination effect,that is,the community structure has a significant inhibitory effect on the online word-of-mouth information dissemination.

关 键 词:多主体仿真 口碑信息传播 社区结构 传染病模型 观点交互机制 

分 类 号:G206[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象