检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李蕾 LI Lei(Shaanxi Surveying and Mapping Production Supervision and Inspection Station,Ministry of Natural Resources,Xi’an Shaanxi 710054,China)
机构地区:[1]自然资源部陕西测绘产品质量监督检验站,陕西西安710054
出 处:《北京测绘》2023年第6期903-907,共5页Beijing Surveying and Mapping
摘 要:支持向量机(SVM)是一种新兴的机器学习算法,常用在遥感影像分类研究中。针对样本数目不均衡时标准SVM算法的分类结果精度不佳的问题,本文根据不同类别的样本数对样本定权,提出了基于样本数加权的SVM算法。采用GeoEye卫星的高分辨率遥感影像对该算法进行验证,相应结果和标准SVM算法进行对比。结果表明,训练样本数较多时加权SVM算法与标准SVM算法均取得较好效果,但当训练样本数不均衡时加权SVM算法可有效补偿其不利影响,精度远优于标准SVM算法。Support vector machine(SVM)is an emerging machine learning algorithm,which is commonly used in satellite image classification research.To address the problem that the classification results of standard SVM are not accurate while the number of samples is unbalanced,this paper proposed a weighted SVM algorithm and the samples were weighted according to the number of samples in different categories.This algorithm was validated using high-resolution GeoEye satellite images,and the corresponding validated results were compared with those of the standard SVM algorithm.The results showed that both the weighted SVM algorithm and the standard SVM algorithm achieved accurate results when the number of training samples was large.But when the number of training samples was unbalanced,the weighted SVM algorithm could effectively compensate for its adverse effects,and the accuracy of the weighted SVM algorithm was much better than that of the standard SVM algorithm.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7