检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘俊豪 王美林[1] 谢兴 宋烨兴 许莉花 LIU Junhao;WANG Meilin;XIE Xing;SONG Yexing;XU Lihua(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China;School of Mechanical and Electrical Engineering,Xichang University,Xichang 615000,Sichuan,China)
机构地区:[1]广东工业大学信息工程学院,广州510006 [2]西昌学院机械与电气工程学院,四川西昌615000
出 处:《计算机工程》2023年第8期240-249,共10页Computer Engineering
基 金:国家自然科学基金(U1701266,62002069);广东省科技计划(2019A050513011);广州市科技计划(202002030386)。
摘 要:皮革瑕疵检测是工业皮革生产行业中质量控制的重要环节,针对工业皮革瑕疵在线检测中存在计算复杂度高、对小目标检测效果差、数据样本少等问题,提出一种基于注意力机制的轻量化皮革瑕疵检测算法GPC-YOLOv5。使用工业相机采集瑕疵图片并对其进行标注,制作瑕疵数据集,利用YOLOv5s模型进行目标检测。使用ImgAug数据增强技术扩充原始数据集的数量,并在训练过程中结合Mosaic数据增强方法解决数据样本少的问题。在YOLOv5的基础上,使用轻量化的GhostNet模块替换主干网络和颈部的卷积模块,有效减少模型的参数量和计算量,通过改进激活函数减少网络复杂度并加快计算速度,以满足实时性需求。在主干网络中加入新型注意力机制Polarized Self-Attention模块,增强网络对于小目标瑕疵的特征提取能力。实验结果表明,相比YOLOv5,GPC-YOLOv5算法的参数量和计算量分别减少25.4%和28.5%,总体mAP达到89.2%,能够有效提高检测精度并加快检测速度。In the industrial leather production industry,leather defect detection is an important part of quality control.Aiming at the problems of high computational complexity,difficulties in small target defect detection,and few data samples,this study proposes an improved lightweight leather defect detection algorithm based on attention mechanism,GPC-YOLOv5.Defect pictures are collected using an industrial camera;whereby the images are annotated to create a defect dataset,and use the YOLOv5s model for object detection.The number of original datasets are expanded to solve the problem of few data samples using the Mosaic method combined with ImgAug data augmentation in the training process.The lightweight GhostNet module replaces the convolution module of the backbone network and neck in YOLOv5,thereby effectively reducing the number of parameters and computation load of the model.The network complexity reduces and calculations accelerate because of improving the activation function and real-time requirements are satisfied.The feature extraction ability of the network for small target defects is enhanced by adding a new attention mechanism,Polarized Self-Attention module,to the backbone network.The experimental results show that compared to YOLOv5,the GPC-YOLOv5 algorithm reduces the number of parameters and computation load by 25.4%and 28.5%,respectively,with an overall mean Average Precision(mAP)of 89.2%,effectively improving detection accuracy and accelerating detection speed.
关 键 词:皮革瑕疵 轻量型YOLOv5算法 注意力机制 深度学习 目标检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222