基于跨尺度特征融合的泵站安全帽检测方法  

Safety Helmet Detection Method of Pump Station Based on Cross-Scale Feature Fusion

在线阅读下载全文

作  者:李记恒 褚霄杨 王涛 刘鹏宇[2,3,4] LI Jiheng;CHU Xiaoyang;WANG Tao;LIU Pengyu(Tuancheng Lake Management Office of Beijing South to North Water Transfer Project,Beijing 100195,China;Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Advanced Information Network Beijing Laboratory,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent Systems,Beijing University of Technology,Beijing 100124,China)

机构地区:[1]北京市南水北调团城湖管理处,北京100195 [2]北京工业大学信息学部,北京100124 [3]先进信息网络北京实验室,北京100124 [4]北京工业大学计算智能与智能系统北京市重点实验室,北京100124

出  处:《测控技术》2023年第7期16-21,118,共7页Measurement & Control Technology

基  金:青海省基础研究计划项目(2021-ZJ-704)。

摘  要:为应对泵站场景下设备和人员之间目标被遮挡及远距离小目标对泵站重点区域安全帽佩戴自动监管带来的挑战,提出了一种融合注意力机制和跨尺度特征融合的安全帽佩戴检测算法,以克服在远距离、有遮挡场景下安全帽检测准确度低的问题。通过采集泵站监控视频数据构建泵站场景安全帽数据集,在特征提取网络中加入注意力机制模块,使得模型更关注于小目标的通道信息;同时增加检测层使得特征融合时能结合多级特征,并使用柔和非极大值抑制(Soft Non-Manimum Suppression,Soft-NMS)和完全交并比(Complete Intersection over Union,CIoU)算法进行改进以减少遮挡目标漏检情况。在自建数据集进行试验,结果表明改进后的算法平均准确率达到93.5%,与其他目标检测算法相比精度均有所提升,证明该方法在泵站重点区域场景安全帽检测任务中具有良好的性能。In order to deal with the challenges of target occlusion between equipment and personnel and the automatic supervision of helmet wearing caused by remote small targets in key areas of pumping station,a safety helmet detection algorithm combining attention mechanism and cross-scale feature fusion is put forward to overcome the problem of low accuracy of safety helmet detection in long-distance and occluded scenes.The pump station scene helmet data set is constructed by collecting the monitoring video data.And the attention mechanism module is added to the feature extraction network to make the model pay more attention to the channel information of small targets.At the same time,the detection layer is added so that multi-level features can be combined during feature fusion,Soft-NMS and CIoU algorithms is applied to reduce the missing detection of occluded targets.Experimental results on the self-built data set show that the average accuracy of the improved algorithm reaches 93.5%,which is higher than other target detection algorithms.It proves that the method has good performance in the safety helmet detection task in the key area of the pumping station.

关 键 词:泵站 安全帽检测 注意力机制 特征融合 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象