检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柴敬[1,2] 张锐新 欧阳一博 张丁丁[1,2] 王润沛 田志诚 刘泓瑞 韩志成 CHAI Jing;ZHANG Ruixin;OUYANG Yibo;ZHANG Dingding;WANG Runpei;TIAN Zhicheng;LIU Hongrui;HAN Zhicheng(School of Energy,Xi'an University of Science and Technology,Xi'an 710054,China;Key Laboratory of Western Mine Exploitation and Hazard Prevention of Ministry of Education,Xi'an 710054,China)
机构地区:[1]西安科技大学能源学院,陕西西安710054 [2]教育部西部矿井开采及灾害防治重点实验室,陕西西安710054
出 处:《工矿自动化》2023年第7期83-91,共9页Journal Of Mine Automation
基 金:国家自然科学基金资助项目(41027002,51804244)。
摘 要:通过传统的监测手段获取矿压数据并采用统计学或机器学习算法对矿压进行预测已不能满足矿山智能化发展要求,需要寻求新的方法提升矿压数据监测及矿压预测的准确性和实时性。基于三维相似物理模型试验,搭建分布式光纤监测系统,沿模型走向和高度2个方向预埋分布式光纤,在模拟工作面开采过程中采集来压数据,并引入光纤布里渊频移平均变化度作为判断是否来压的指标;通过对光纤监测数据进行噪声去除、归一化及相空间重构等预处理,将一维初始监测数据转换为三维数据;使用贝叶斯算法对CatBoost算法进行迭代参数寻优,在达到最大迭代次数后将最优参数组合装载到CatBoost算法中,通过训练得到矿压显现预测模型。结果表明:贝叶斯算法比传统网格搜索法的迭代次数更少、误差更小;与随机森林(RF)、梯度提升决策树(GBDT)和极值梯度提升树(XGBoost)算法相比,CatBoost算法的预测精度更高、泛化能力更强;基于贝叶斯算法优化的CatBoost矿压显现预测模型能准确预测出测试集中的3次来压,且整体预测趋势与实测值较为吻合,平均绝对误差为0.0091,均方根误差为0.0077,决定系数为0.9339。Obtaining mine pressure data through traditional monitoring methods and using statistical or machine learning algorithms to predict mine pressure can no longer meet the requirements of intelligent development in mines.It is necessary to seek new methods to improve the accuracy and real-time performance of mine pressure data monitoring and prediction.Based on three-dimensional similar physical model experiments,a distributed fiber optic monitoring system is constructed.The distributed fiber optic cables are pre-embedded along the model's direction and height.Pressure data is collected during the simulated mining process of the working face,and the optical fiber Brillouin frequency shift mean variation degree is introduced as an indicator to determine whether the pressure is coming.By preprocessing the optical fiber monitoring data such as noise removal,normalization and phase space reconstruction,the one-dimensional initial monitoring data is converted into three-dimensional data.The method uses Bayesian algorithm to iteratively optimize the parameters of the algorithm.After reaching the maximum number of iterations,the optimal parameter combination is loaded into the CatBoost algorithm.The prediction model for mine pressure appearance is obtained by training.The results show that the Bayesian algorithm has fewer iterations and smaller errors than traditional grid search methods.Compared with random forest(RF),gradient boosting decision tree(GBDT)and extreme gradient boosting(XGBoost),the CatBoost algorithm has higher prediction accuracy and stronger generalization capability.The CatBoost mine pressure appearance prediction model optimized by the Bayesian algorithm can accurately predict the three weighting in the test set.The overall prediction trend is in line with the measured value,with mean absolute error of 0.0091,root-mean-square error of 0.0077,and determination coefficient of 0.9339.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46