检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱继炜 李继庚[1] 满奕[1,2] 洪蒙纳 何正磊[1] QIAN Jiwei;LI Jigeng;MAN Yi;HONG Mengna;HE Zhenglei(State Key Lab of Pulp and Paper Engineering,South China University of Technology,Guangzhou,Guangdong Province,510640;Guangdong Artificial Intelligence and Digital Economy Lab(Guangzhou),Guangzhou,Guangdong Province,510335;China-Singapore International Joint Research Institute,Guangzhou,Guangdong Province,510555)
机构地区:[1]华南理工大学制浆造纸工程国家重点实验室,广东广州510640 [2]人工智能与数字经济广东省实验室(广州),广东广州510335 [3]中新国际联合研究院,广东广州510555
出 处:《中国造纸》2023年第7期72-78,129,共8页China Pulp & Paper
基 金:国家重点研发计划(2020YFE0201400);人工智能与数字经济广东省实验室(广州)青年学者项目(PLZ2021KF0019)。
摘 要:箱纸板生产涉及一系列复杂工艺流程,且由于缺乏关键质量的在线监测手段,进而导致质量管控困难。为此,本研究尝试基于机器学习方法建立可在线监测箱纸板质量的预测模型,也称软测量模型,以促进上述问题的有效解决。本研究采用箱纸板企业实际数据,训练并比较了随机森林(RF)、梯度提升回归(GBR)、K近邻回归(KNN)及偏最小二乘回归(PLS)在多项质量指标上的预测表现。结果表明,不同质量指标本身很大程度上影响了预测精度的上限,而不同算法对理论上限的逼近程度有显著差异。复杂、非线性的集成模型(RF、GBR)相较于简单模型(KNN、PLS)有更好的表现。The production of cardboard in volves a series of complex processes and the lack of online monitoring methods for key qualities,which makes it difficult to control the quality of cardboard.This paper attempted to establish predictive models,also known as soft measurement models,which based on machine learning methods that could monitor cardboard quality on line to facilitate effective solutions to the above problems.This study used actual data from cardboard companies to train and compared the predictive performance of random forest(RF),gradient boosted regression(GBR),K-nearest neighbor regression(KNN),and partial least squares regression(PLS) on a variety of quality indicators.The results showed that the different quality indicators themselves largely effected the upper limit of prediction accuracy,while the degree of approximation to the theoretical upper limit varied significantly among algorithms.Complex,nonlinear integrated models(RF,GBR) had better performance,compared to simple models(KNN,PLS).
分 类 号:TS77[轻工技术与工程—制浆造纸工程] TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15