基于DEA模型的重工业企业行政绩效评价模型研究  

Evaluation Model of Administrative Performance of Heavy Industry Enterprises Based on DEA Model

在线阅读下载全文

作  者:路小静 Lu Xiaojing(Beijing Digital Saint Accounting Firm Ltd.,Beijing 101300,China)

机构地区:[1]北京数圣会计师事务所有限公司,北京101300

出  处:《现代工业经济和信息化》2023年第6期335-337,共3页Modern Industrial Economy and Informationization

摘  要:在重工业企业行政绩效评价过程中,评价模型在数据处理上存在业务数据冗余问题,导致评价指标的敏感性不足,严重影响评价效果。面对这种情况,提出基于DEA模型的重工业企业行政绩效评价模型,并进行研究。以重工业企业的行政工作运营情况为依据,确定行政绩效评价的相关人员,根据不同的评价对象和不同的评价需求,确定企业行政绩效评价指标和评价标准。在此基础上,对评价指标数据进行无量纲化处理,将处理后的数据作为DEA模型的输入项,计算指标熵,建立评价模型,获得行政绩效综合评价结果。实验结果表明:提出的基于DEA模型的重工业企业行政绩效评价模型敏感性高,评价结果可靠。In the process of evaluating the administrative performance of heavy industrial enterprises,the evaluation model has the problem of redundancy of operational data in data processing,which leads to insufficient sensitivity of evaluation indicators and seriously affects the evaluation effect.In the face of this situation,a research on the administrative performance evaluation model of heavy industry enterprises based on DEA model is proposed.Based on the administrative work operation of heavy industry enterprises,the relevant personnel for administrative performance evaluation are identified,and the administrative performance evaluation indexes and evaluation criteria of enterprises are determined according to different evaluation objects and different evaluation needs.On this basis,the evaluation index data are dimensionlesly processed,and the processed data are used as the input term of the DEA model to calculate the index entropy,establish the evaluation model and obtain the comprehensive evaluation results of administrative performance.The experimental results show that the proposed DEA model-based administrative performance evaluation model for heavy industry enterprises is highly sensitive and the evaluation results are reliable.

关 键 词:DEA模型 重工业企业 行政管理 绩效评价 模型优化 敏感性 

分 类 号:F272.5[经济管理—企业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象