检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:印杰[1] 黄肖宇 刘家银 牛博威 谢文伟 YIN Jie;HUANG Xiao-yu;LIU Jia-yin;NIU Bo-wei;XIE Wen-wei(Department of Computer Information and Network Security,Jiangsu Police Institute,Nanjing 210031;Cyber Security Guard Corps,Jiangsu Provincial Security Department,Nanjing 210024;Department of Network Security,Trend Micro Incorporated,Nanjing 210012;FOCUSLAB of Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
机构地区:[1]江苏警官学院计算机信息与网络安全系,江苏南京210031 [2]江苏省公安厅网络安全保卫总队,江苏南京210024 [3]趋势科技股份有限公司网络安全部,江苏南京210012 [4]南京邮电大学开放计算与普适感知前沿实验室,江苏南京210003
出 处:《计算机工程与科学》2023年第8期1433-1442,共10页Computer Engineering & Science
基 金:国家自然科学基金(62272203);浙江大学CAD&CG国家重点实验室开发课题(A2102);南京大学计算机软件新技术国家重点实验室开放基金(KFKT2020B19);江苏省高等学校自然科学基金(21KJD520003)。
摘 要:近年来,基于有监督机器学习的安卓恶意软件检测方法取得了一定进展。但是,由于恶意软件样本搜集困难,带标签的数据集规模一般较小,导致训练出的有监督模型泛化能力有限。针对这一问题,提出无监督和有监督相结合的恶意软件检测方法。首先,使用无监督方法预训练语言模型,从大量无标记APK样本中学习字节码中丰富、复杂的语义关系,提高模型的泛化能力。然后,利用有标记的恶意软件样本对语言模型进行微调,使其能更有效地检测恶意软件。在Drebin等实验数据集上的实验结果表明,相比基准方法,提出的方法泛化能力更好,检测性能更优,最高检测准确率达98.7%。In recent years,supervised machine learning-based Android malware detection methods have made some progress.However,due to the difficulty in collecting malware samples,the size of labeled datasets is generally small,which leads to limited generalization ability of the trained supervised models.To address this problem,an unsupervised and supervised combined malware detection method is proposed.Firstly,a language model is pre-trained on a large amount of unlabeled APK samples using unsupervised methods to learn the rich and complex semantic relationships between different operators.Then,the pre-trained language model is fine-tuned by the labeled malware samples to realize the malware detecting ability.Experiments on datasets such as Drebin demonstrate that the proposed method has better generalization ability and detection performance compared with the baseline method,which achieves a maximum accuracy of 98.7%.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.254.100