检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李佳骏 许浩博[1] 王郁杰 肖航 王颖[1] 韩银和[1] 李晓维[1] Li Jiajun;Xu Haobo;Wang Yujie;Xiao Hang;Wang Ying;Han Yinhe;Li Xiaowei(Research Center for Intelligent Computing Systems,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049)
机构地区:[1]中国科学院计算技术研究所智能计算机研究中心,北京100190 [2]中国科学院大学,北京100049
出 处:《计算机辅助设计与图形学学报》2023年第6期961-969,共9页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(62025404,61834006,61874124);中国科学院战略性先导科技专项(C类)(XDC05030100).
摘 要:针对二值化神经网络加速器计算溢出和乘法器依赖的问题,提出一套二值化神经网络设计及其训练方法.首先设计能够模拟溢出的矩阵乘法,保证模型部署后不丢失准确率;然后优化卷积层和激活函数,缓解溢出总量;再设计移位批标准化层,使二值化神经网络摆脱对乘法运算的依赖,并有效地降低访存;最后针对改进的模型提出基于溢出启发的协同训练框架,确保模型训练能够收敛.实验结果表明,与10个主流的关键词激活方法相比,在准确率无明显损失的情况下,所提方法使片上计算规模减少超过49.1%,并为加速器带来至少21.0%的速度提升.Aiming at the problem of computation overflow and multiplier dependence on the binarized neural network accelerator,a set of design and training methods of binarized neural networks(BNN)are proposed.Firstly,an accurate simulator is designed to ensure that BNN does not lose accuracy after deployment.Secondly,the convolutional layer and activation functions of the BNN are optimized to alleviate the total amount of overflow.Thirdly,an operator named Shift-based Batch Normalization is proposed to make the BNN get rid of the dependence on multiplication and reduce memory access.Finally,for the improved BNN,a collaborative training framework based on overflow heuristics is proposed to ensure that the model training converges.The experimental results show that,compared with 10 keyword spotting methods,the accelerator reduces the amount of on-chip computation by more than 49.1%and increases the speed at least 21.0%without significant loss of accuracy.
关 键 词:二值化神经网络 深度学习 模型训练 神经网络加速器
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49