自动驾驶车辆队列控制策略研究  被引量:1

Research About Autonomous Vehicle Platoon Control Strategy

在线阅读下载全文

作  者:张涛 柳祖鹏[1] 陈玲娟[1] 谭志鹏 ZHANG Tao;LIU Zu-peng;CHEN Ling-juan;TAN Zhi-peng(School of Automobile and Traffic Engineering,Wuhan University of Science and Technology,Hubei Wuhan 430065,China)

机构地区:[1]武汉科技大学汽车与交通工程学院,湖北武汉430065

出  处:《机械设计与制造》2023年第8期38-42,50,共6页Machinery Design & Manufacture

基  金:湖北省教育厅科研计划资助项目—集群智能网联汽车的涌现机理与控制方法(B2019014)。

摘  要:随着智能交通和网联车辆迅速发展,控制智能网联车辆在道路上高效行驶的问题亟待解决。为使智能网联汽车在道路上有序行驶,提出纵向控制策略和横向控制策略相结合的车队行驶控制策略,使车辆形成车队行驶,提高行驶效率,降低交通道路拥堵和车祸风险。为验证此控制策略,运用VISSIM交通仿真软件建立带有匝道的城市高架路段,通过编辑外部驾驶员模型文件和外部导入,对软件进行了二次开发。以默认车辆组成和车队控制策略车辆在仿真情形下做对比,进行仿真实验采集数据。结果表明,该控制策略与普通驾驶模式相比有较大优势,为智能网联汽车控制方案提供了建议。With the rapid development of intelligent transportation and networked vehicles,the problem of controlling intelligent networked vehicles to drive efficiently on the road needs to be solved urgently.In order to make intelligent networked cars drive orderly on the road and improve the efficiency of traffic flow,this paper put forward a platoon control strategy combining longitudinal control strategy and lateral control strategy to make the traffic flow driving more efficient,and reduce the risk of traffic congestion and traffic accidents.In order to verify this control strategy,the VISSIM trafic simulation sofware was used to build an urban elevated section with ramps,and the software was re-developed by editing external driver model files and external imports.The default vehicle composition and platoon control strategy are compared in different simulation situations,and simulation experiments are performed to collect data.The results show that the control strategy improves the efficiency of traffic flow,and provides suggestions for the control scheme of intelligent connected vehicles.

关 键 词:智能交通 自动驾驶 车队控制策略 VISSIM 外部驾驶员模型 

分 类 号:TH16[机械工程—机械制造及自动化] U491.2[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象