检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Waixiang Cao Lueling Jia Zhimin Zhang
机构地区:[1]School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China [2]School of Mathematics and Statistics,Shandong Normal University,Jinan,250014,China [3]Beijing Computational Science Research Center,Beijing 100193,China [4]Department of Mathematics,Wayne State University,Detroit,MI 48202,USA
出 处:《Communications in Computational Physics》2023年第5期1466-1508,共43页计算物理通讯(英文)
基 金:This work is supported in part by the National Natural Science Foundation of China under grants No.12271049,12101035,12131005,U1930402.
摘 要:In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniqueness and optimal error estimates of the numerical solution are established.A unified approach is proposed to study the superconvergence property of these methods.We prove that,for kth-order elements,the C^(0)and C1 finite element solutions and their derivative are superconvergent with rate h2k−2(k≥3)at all mesh nodes;while the solution of the C^(2)-C^(0)Petrov-Galerkin method and its first-and second-order derivatives are superconvergent with rate h^(2k−4)(k≥5)at all mesh nodes.Furthermore,interior superconvergence points for the l-th(0≤l≤m+1)derivate approximations are also discovered,which are identified as roots of special Jacobi polynomials,Lobatto points,and Gauss points.As a by-product,we prove that the C^(m)finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the Hl(0≤l≤m+1)norms.All theoretical findings are confirmed by numerical experiments.
关 键 词:C^(m)finite element methods SUPERCONVERGENCE fourth-order elliptic equations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.8.41