检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhenchen Liu Wen Zhou Yuan Yuan
机构地区:[1]Department of Atmospheric and Oceanic Sciences&Institute of Atmospheric Sciences,Fudan University,Shanghai,China [2]China Meteorological Administration Key Laboratory for Climate Prediction Studies,National Climate Center,Beijing,China
出 处:《Atmospheric and Oceanic Science Letters》2023年第4期15-21,共7页大气和海洋科学快报(英文版)
基 金:supported by the National Key R&D Program of China[grant number 2022YFC3002801];a key project of the National Natural Science Foundation of China[grant numbers 42120104001 and 42192563];a project of the Center for Ocean Research in Hong Kong and Macao(CORE);the National Natural Science Foundation of China for Youth[grant number 42205191].
摘 要:极端气候事件的精准识别是机理分析的重要前提.本研究借助无监督机器学习中经典的DBSCAN密度聚类算法,发展了在三维(经度-纬度-时间)空间内进行目标事件识别和参数敏感性分析的研究方案.在2022年长江全域高温伏秋旱事件识别中的应用表明,本次天气尺度极端热浪和季节尺度重旱事件的产生发展,空间传播模式不同.天气尺度热浪信号自6月底从北太平洋向西南方向延伸,直至8月中旬覆盖长江全域;季节重旱信号于7月中旬从孟加拉湾陆面区域向东北向延伸,直至9月中旬覆盖长江全域.同时,本研究中亦进行了相关参数敏感性的详细分析,对算法应用,结果理解亦有帮助.Spatially and temporally accurate event detection is a precondition for exploring the mechanisms of climate extremes.To achieve this,a classical unsupervised machine learning method,the DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering algorithm,was employed in the present study.Furthermore,the authors developed a 3D(longitude–latitude–time)DBSCAN-based workflow for event detection of targeted climate extremes and associated analysis of parameter sensitivity.The authors applied this 3D DBSCAN-based workflow in the detection of the 2022 summertime Yangtze extreme heatwave and drought based on the ERA5 reanalysis dataset.The heatwave and drought were found to have different development and migration patterns.Synoptic-scale heatwave extremes appeared over the northern Pacific Ocean at the end of June,extended southwestwards,and covered almost the entire Yangtze River Basin in mid-August.By contrast,a seasonal-scale drought occurred in mid-July over the continental area adjacent to the Bay of Bengal,moved northeastwards,and occupied the entire Yangtze River Basin in mid-September.Event detection can provide new insight into climate mechanisms while considering patterns of occurrence,development,and migration.In addition,the authors also performed a detailed parameter sensitivity analysis for better understanding of the algorithm application and result uncertainties.
关 键 词:DBSCAN算法 复合气候极值事件 高温干旱 长江流域 机器学习
分 类 号:P426.616[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33