检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘明健 安坤 李健宏 王奇 孟江[2] Pan Mingjian;An Kun;Li Jianhong;Wang Qi;Meng Jiang(School of Electrical and Control Engineering,North University of China,Taiyuan 030051,China;School of Mechanical Engineering,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学电气与控制工程学院,太原030051 [2]中北大学机械工程学院,太原030051
出 处:《电子测量技术》2023年第9期182-188,共7页Electronic Measurement Technology
基 金:国家自然科学基金(61774138);山西省自然科学基金面上项目(201801D121184)资助。
摘 要:对于超磁致伸缩材料固有的迟滞非线性特性,本文提出一种基于小脑模型神经网络(CMAC)前馈逆补偿与PID相结合的复合控制方法。首先利用CMAC神经网络学习获得超磁致伸缩致动器(GMA)的迟滞逆模型进行补偿,再利用CMAC模型在线快速学习适应的能力,结合PID控制器降低跟踪控制时的误差和扰动,从而实现GMA的精密控制。通过MATLAB建立了CMAC前馈逆补偿控制器和CMAC-PID复合控制模型,最后通过仿真实验验证所提方法的有效性。结果表明,提出的利用CMAC神经网络逼近的迟滞模型具有令人满意的精度,在CMAC-PID复合控制方案的作用下,系统的期望位移与实际位移相对误差值最大值仅2.39%,平均相对误差值不到0.5%。说明该控制策略能适应控制对象的非线性变化,有效地提高GMA的跟踪精度。For the inherent hysteresis nonlinearity of magnetostrictive materials,this paper presents a composite control method based on CMAC(cerebellar model neural network)feedforward inverse compensation and PID.Firstly,CMAC neural network is used to learn and obtain the hysteresis inverse model of giant magnetostrictive actuator(GMA)for compensation,and then the CMAC model is used to learn and adapt online quickly,and PID controller is used to reduce the error and disturbance during tracking control,so as to realize the precision control of GMA.CMAC feedforward inverse compensation controller and CMAC-PID compound control model are established by MATLAB.Finally,the effectiveness of the proposed method is verified by simulation experiments.The results show that the proposed hysteresis model approximated by CMAC neural network has satisfactory accuracy.Under the action of CMAC-PID composite control scheme,the maximum relative error between the expected displacement and the actual displacement of the system is only 2.39%,and the average relative error is less than 0.5%.It shows that the control strategy can adapt to the nonlinear change of the control object and effectively improve the tracking accuracy of GMA.
分 类 号:TN389.1[电子电信—物理电子学] TB381[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7