检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦康 张小俊[1] 张明路[1] 杨亚昆 Qin Kang;Zhang Xiaojun;Zhang Minglu;Yang Yakun(College of Mechanical Engineering,Hebei University of Technology,Tianjin 300000,China)
出 处:《电子测量技术》2023年第8期51-58,共8页Electronic Measurement Technology
基 金:天津市新一代人工智能科技重大专项(18ZXZNGX00230)资助。
摘 要:针对驾驶员相似的背景下的细微动作的动作识别,提出了一种基于X3D卷积神经网络X3D-M-GC-AE。通过引入轻量级的自注意力网络GCNet,提高对时间和空间关键特征的关注度,不引入参数量的情况下,提高检测精度;设计了一种运动增强模块,使网络对时序上的运动信息更加敏感;引入知识蒸馏,将X3D-XL作为教师网络,X3D-M-GC-AE作为学生网络,可以使用较少的参数量和计算量,达到可以实车应用的程度。实验结果表明教师网络测试精度最高可以达到75.56%,学生网络最高可以达到71.13%,该框架在车载硬件设备要求较低的情况下能够实现较高精度的检测效果。Aiming at the action recognition of subtle actions in the similar background of drivers,X3D-M-GC-AE based on X3Dnetwork is proposed.By introducing the lightweight self-attention network GCnet,the attention to key features in time and space is improved,and the detection accuracy is improved without increasing parameter quantities.Action enhancement block is designed to make the network more sensitive to the action information in time series.Introducing knowledge distillation,taking X3D-XL as the teacher network and X3D-M-GC-AE as the student network,so that X3D-M-GC-AE can be used in real vehicles with less parameters and calculations.The experimental results show that the maximum test accuracy of teacher network can reach 75.56%,and that of student network can reach 71.13%.This framework can achieve high-precision detection results in the case of low requirements for vehicle hardware equipment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.29.119