基于ResSE-SegNet的智能电表通信模块铭牌检测与识别  被引量:3

Nameplate Detection and Recognition of Smart MeterCommunication Module Based on ResSE-SegNet

在线阅读下载全文

作  者:翟晓卉 孙凯 赵吉福 孙艳玲 邢宇 郭凯旋 王海英[2] ZHAI Xiaohui;SUN Kai;ZHAO Jifu;SUN Yanling;XING Yu;GUO Kaixuan;WANG Haiying(Marketing Service Center(Metering Center),State Grid Shandong Electric Power Company,Jinan 250000,China;College of Automation,Harbin University of Science and Technology,Harbin 150080,China)

机构地区:[1]国网山东省电力公司营销服务中心(计量中心),济南250000 [2]哈尔滨理工大学自动化学院,哈尔滨150080

出  处:《哈尔滨理工大学学报》2023年第2期136-144,共9页Journal of Harbin University of Science and Technology

基  金:国家自然科学基金(61571168);山东省技术创新项目(520633200003)。

摘  要:针对智能电表通信模块铭牌检测和识别问题,本文提出了一种基于ResSE-SegNet的级联深度学习方法,采用高斯滤波和自适应图像对比度增强等图像预处理技术,通过深度语义分割网络来确定输入图像中厂家名称所在的区域,并采用深度编解码器网络结构进行分割,构建并训练端到端的卷积神经网络(CNN)模型用于识别不同的厂家。最后通过全维度智能电表检测系统获得通信模块图像的数据集并进行通信模块铭牌的检测和识别实验,实验结果表明,该方法的召回率为92.34%,精确率为93.97%,F1-Score为92.14%,对智能电表通信模块厂家的分类准确率为98.53%。Aiming at the problem of nameplate detection and recognition of smart meter communication modules,this paper proposes a cascaded deep learning method based on ResSE-SegNet,which adopts image preprocessing techniques such as Gaussian filtering and adaptive image contrast enhancement,and determines the input through a deep semantic segmentation network.The region where the manufacturer′s name is located in the image is segmented using a deep codec network structure,and an end-to-end convolutional neural network(CNN)model is constructed and trained to identify different manufacturers.Finally,the data set of the communication module image is obtained through the full-dimensional smart meter detection system,and the detection and recognition experiment of the communication module nameplate is carried out.The experimental results show that this method achieves a recall rate of 92.34%,a precision rate of 93.97%,and an F1-Score of 92.14%.The classification accuracy rate for smart meter communication module manufacturers is 98.53%.

关 键 词:通信模块 级联深度学习 检测和识别 卷积神经网络 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象