生物视觉启发的低照度视频自适应增强设计与FPGA加速实现  被引量:1

Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation

在线阅读下载全文

作  者:张显石 宋健 宋泗锦 李永杰[1] ZHANG Xianshi;SONG Jian;SONG Sijin;LI Yongjie(School of Life Sciences and Technology,University of Electronic Science and Technology of China,Chengdu 610054,China)

机构地区:[1]电子科技大学生命科学与技术学院,成都610054

出  处:《电子与信息学报》2023年第8期2739-2748,共10页Journal of Electronics & Information Technology

基  金:四川省中央引导地方科技发展专项(#2022ZYD0112);四川省自然科学基金(2022NSFSC0527)。

摘  要:该文基于现场可编程门阵列实现了受生物视觉机制启发的夜间图像增强模型,实时高效地对夜间低照度视频图像进行自适应增强。受初级视觉系统中大小细胞通路启发,该文采取独立的两条通路分别处理结构与细节信息,获得了较好的处理效果与处理效率。为了实现对高清视频的实时增强,基于现场可编程门阵列对该文算法进行了加速实现。通过滑动数据窗并行处理、相邻帧信息共享、多通道并行化等硬件设计保证高数据吞吐量。该设计在XC7Z100现场可编程门阵列上达到对1080P@60 Hz彩色视频增强的实时性要求。与本领域已有设计相比,该文设计具有更高的数据吞吐量,适用于高分辨率实时图像增强应用。A nighttime image enhancement model is proposed in this paper,which is inspired by biological vision mechanism and implemented on Field Programmable Gate Arrays(FPGA)for real-time enhancement of low-light videos and images.Inspired by the Midget cells and the Parasol cells in the early visual system,the proposed method processes the structure and detail information through two independent pathways respectively,and obtains a nice effect and efficiency.To achieve real-time enhancement of high-resolution videos,this paper implements the proposed method on Field Programmable Gate Arrays.High data throughput is ensured through hardware design such as sliding data window parallel processing,adjacent frame information sharing,and multi-channel parallelization.Implemented on Field Programmable Gate Arrays XC7Z100,the proposed design achieves processing 60 frames per second for 1024×768 RGB images.Compared with existing designs in this field,the proposed design has higher data throughput and is suitable for high-resolution realtime image enhancement applications.

关 键 词:生物视觉计算模型 图像增强 现场可编程门阵列 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象