检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜睿山[1,2] 张轶楠 孟令东[2] 张桐[3] DU Ruishan;ZHANG Yinan;MENG Lingdong;ZHANG Tong(Department of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China;Key Laboratory of Oil and Gas Reservoir and Underground Gas Storage Integrity Evaluation,Northeast Petroleum University,Daqing 163318,China;Exploration and Development Research Institute,PetroChina Daqing Oilfield Limited Company,Daqing 163318,China)
机构地区:[1]东北石油大学计算机与信息技术学院,黑龙江大庆163318 [2]东北石油大学油气藏及地下储库完整性评价黑龙江省重点实验室,黑龙江大庆163318 [3]大庆油田有限责任公司勘探开发研究院,黑龙江大庆163318
出 处:《郑州大学学报(理学版)》2023年第6期63-70,共8页Journal of Zhengzhou University:Natural Science Edition
基 金:国家自然科学基金联合基金项目(U20A2093);东北石油大学引导性创新基金项目(2020YDL-04)。
摘 要:在复杂的地质勘探条件下准确完成矿物识别是一项重要的任务。基于数据驱动的深度学习模型能精确识别各类岩石矿物,但需要构建庞大且完备的数据集,在实际情况下难以应用。针对此问题,结合小样本学习、度量学习以及元学习训练策略,使用EMD距离度量计算图像之间的结构距离,构建一种适应于小样本矿物的图像分类模型。核心思想在于利用图块级别度量并引入交叉参考权重机制,有效减少同类差异大和背景杂乱带来的影响,优于图与图判定分类的模型。在mini-ImageNet数据集上,5-way 1-shot和5-way 5-shot设置的分类准确率分别提高至55.91%、67.58%;将算法应用于小样本黏土矿物数据集上,5-way 5-shot设置的分类准确率为92.65%。实验结果表明,利用度量学习方法的分类精度高于其他小样本学习方法。Mineral identification is an important task of geological survey,which could be a big challenge in complex geological conditions.Data-driven deep learning model could accurately identify all kinds of rocks and minerals,but large and complete datasets should be constructed,and it was difficult in practical situations.Aiming at the problems,herein,an image classification model adapted to small sample minerals was proposed.It adopted the earth mover′s distance(EMD)as a metric to calculate the structural distance between images,which combined the small sample learning,the metric learning and metalearning training strategy.The core idea of the method was to use the measure of graph block level and introduce the cross-reference weight mechanism,which could effectively reduce the influence caused by the large difference of the same class and the clutter of the background,which was better than the model of graph to graph direct decision classification.The results of 5-way 1-shot and 5-way 5-shot classification experiment on mini-ImageNet showed that the classification accuracy of 5-way 1-shot and 5-way 5-shot settings was improved to 55.91%and 67.58%.When the algorithm was applied to a Few-shot clay mineral data-set,the classification accuracy in 5-way 5-shot setting reached 92.65%.The experimental results showed that the classification accuracy of metric learning method was higher than other few-shot methods.
关 键 词:小样本学习 度量学习 EMD距离 特征增强 矿物识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49