川渝地区大气加权平均温度模型优化  被引量:2

An optimization method of weighted mean temperature model in Sichuan-Chongqing region

在线阅读下载全文

作  者:侯晓玲 熊永良 HOU Xiaoling;XIONG Yongliang(Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 611700,China)

机构地区:[1]西南交通大学地球科学与环境工程学院,成都611700

出  处:《导航定位学报》2023年第4期63-69,共7页Journal of Navigation and Positioning

基  金:四川省科技计划资助项目(2022YFG0169)。

摘  要:为了弥补川渝地区还没有本地化加权平均温度(Tm)模型的不足,提出一种川渝地区大气加权平均温度模型优化方法:选取甘孜、温江、西昌、沙坪坝4个站2017—2019年的探空数据,根据最小二乘法进行线性拟合,构建适用于川渝地区的加权平均温度模型。实验结果表明,本地化模型的平均绝对误差(MAE)和均方根误差(RMSE)均值分别为1.24和1.60 K,均优于贝维斯(Bevis)模型和中国加权平均温度回归模型;在本地化模型基础上加入季节性改正后的三角函数值、测站高程和大地纬度因素,新构建的本地化加权平均温度优化模型较本地化模型能取得更高的精度。提出的本地化加权平均温度模型在川渝地区可有较好的适用性,能够为全球导航卫星系统(GNSS)在当地气象行业的应用提供参考。In order to make up for the lack of localized weighted mean temperature(T_(m))model in Sichuan-Chongqing region,the paper proposed an optimization method of weighted mean temperature model in Sichuan-Chongqing region:a􀜶􀭫model suitable for Sichuan-Chongqing region was constructed with linear fitting according to the least square method based on the radiosonde data of four stations(Ganzi,Wenjiang,Xichang and Shapingba)from 2017 to 2019.Experimental results showed that the mean value of mean absolute error(MAE)and root mean square error(RMSE)of T_(m)(CY)model would be 1.24 and 1.60 K,respectively,better than that of T_(m)(Bevis) model and T_(m)(China) model;furthermore,by adding the seasonal corrected trigonometric function values,station elevation and geodetic latitude factors to the T_(m)(CY)model,the proposed constructed localized weighted average temperature optimization model could achieve higher accuracy than the localized model.In general,the proposed localized􀜶􀭫model would have good applicability in Sichuan-Chongqing region,which could provide a reference for the application of local global navigation satellite system(GNSS)meteorology.

关 键 词:川渝地区 加权平均温度 最小二乘 线性拟合 优化模型 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象