基于注意力和宽激活密集残差网络的图像超分辨率重建  被引量:3

Image super-resolution reconstruction based on attention and wide-activated dense residual network

在线阅读下载全文

作  者:寇旗旗 李超 程德强 陈亮亮 马浩辉 张剑英 KOU Qiqi;LI Chao;CHENG Deqiang;CHEN Liangliang;MA Haohui;ZHANG Jianying(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China;School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China)

机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]中国矿业大学信息与控制工程学院,江苏徐州221116

出  处:《光学精密工程》2023年第15期2273-2286,共14页Optics and Precision Engineering

基  金:中央高校基本科研业务费专项资金资助项目(No.2020QN49)。

摘  要:针对全局和局部高低频空间信息利用不足而导致重建图像纹理细节模糊的问题,提出一种基于注意力和宽激活密集残差网络的图像超分辨率重建模型。首先,四个不同尺度且平行的卷积核被用来充分提取图像低频特征作为空间特征转换的先验信息。在深层特征映射模块中构建融合注意力的宽激活残差块,并利用低频先验信息来引导高频特征的提取。该宽激活残差块通过扩大激活函数前的特征通道数来提取更深层次的特征图,且所构造的全局和局部残差连接在加强残差块和网络特征前向传播的同时,在不增加参数情况下使得所提取特征的多样性更加丰富。最后,对得到的特征图进行上采样和重建以得到清晰的高分辨率图像。实验表明,所提算法在BSD100数据集上4倍超分辨率时,相比LatticeNet模型的PSNR指标提升了0.14 dB,SSIM提升了0.001,在主观视觉方面,重建出的图像局部纹理细节也更加清晰。To address the problem of the blurring of the texture details of reconstructed images due to the insufficient utilization of global and local high-and low-frequency spatial information,this paper proposes an image super-resolution reconstruction model based on attention and a wide-activated dense residual net⁃work.First,four parallel convolution kernels with different scales are used to fully extract the low-frequen⁃cy features of the image as the prior information for spatial feature transformation.Second,a wide-activat⁃ed residual block fused with attention is constructed in the deep feature mapping module,and the low-frequency prior information is used to guide the extraction of the high-frequency features.In addition,the wide-activated residual block extracts deeper feature maps by expanding the number of feature channels be⁃fore the activation function.As a result,the constructed global and local residual connections not only strengthen the forward propagation of the residual blocks and network features,but also enrich the diversi⁃ty of the extracted features without increasing the number of parameters.Finally,the feature map is upsampled and reconstructed to obtain a clear high-resolution image.the experimental results show that compared with the LatticeNet model,the peak signal-to-noise ratio of the proposed algorithm is improved by 0.14 dB,and the structural similarity is improved by 0.001 at 4×super resolution on the BSD100 da⁃taset.In addition,the local texture details of the reconstructed image are also clearer in subjective visual⁃ization.

关 键 词:残差网络 超分辨率 宽激活 注意力机制 密集连接 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象