检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:舒文豪 邝思颖 胡晓莉 SHU Wenhao;KUANG Siying;HU Xiaoli(School of Artificial Intelligence,Jianghan University,Wuhan 430056,Hubei,China)
出 处:《江汉大学学报(自然科学版)》2023年第4期29-35,共7页Journal of Jianghan University:Natural Science Edition
基 金:国家自然科学基金资助项目(11501251)。
摘 要:和式极限是重要极限问题之一,在数学各分支领域有着广泛的应用。它复杂多样、灵活多变,通常没有固定的解题方法。一道关于函数列一致收敛性的考研题引发了笔者对函数列和式极限问题的思考。通过对和式极限进行适当的变形与整理,构造一致收敛函数,可以巧妙地解决一系列函数列和式极限问题。对所得结论给出了严谨的推理证明,为解决此类问题提供了一般性思路,并通过对典型例题的分析,从而更有利于初学者对此类问题的理解与把握。The limit of sum form is one of the most important limit problem and has a wide range of applications in all branches of mathematics.It is complex,diverse,and flexible,and there is usually no fixed method to solve it.A postgraduate examination question about the uniform convergence of function sequences triggered the author to think about the limit of sum form with function sequences.By deforming and arranging the limit of the sum form properly and constructing the uniform convergence function,a series of the limit of the sum form with function sequence problems can be solved skillfully.We give rigorous reasoning proof to the conclusion and provide general ideas for solving such problems.Through the analysis of typical examples,it is helpful for beginners to understand and grasp such problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49