检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴家洲[1] 刘君[1] 施佳文 张胜[1] WU Jiazhou;LIU Jun;SHI Jiawen;ZHANG Sheng(School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China)
出 处:《激光技术》2023年第5期723-728,共6页Laser Technology
基 金:国家自然科学基金资助项目(61661037,61961028);南昌航空大学博士基金资助项目(EA201904307)。
摘 要:为了减少激光焊缝语义分割中焊缝形状和颜色多样性对分割精度的影响,采用注意力机制的图像语义分割方法提取焊缝区域。通过把焊缝区域图像从RGB转变到HSV颜色空间,在HSV模型空间实现对焊缝表面颜色识别,分析了3种类型焊缝对区域分割和颜色识别的影响。结果表明,焊缝分割区域平均像素精度约为91.2%,添加注意力机制U型网络模型的分割效果更好。此焊缝表面颜色自动识别结果符合生产要求,在工业生产中有广泛应用前景。In order to reduce the influence of weld shape and color diversity on segmentation accuracy in laser weld semantic segmentation,an image semantic segmentation method based on attention mechanism was used to extract weld.The image in the weld was converted from RGB(red,green,blue)to HSV(hue,saturation,value)color space,and the weld surface color was recognized in HSV.The effects of three kinds of welds on region segmentation and color recognition were analyzed.The results show that the average pixel accuracy of the weld segmentation region is about 91.2%,and the segmentation effect of the attention U-Net model with attention mechanism is better.The results of automatic identification of weld surface color meet production requirements,and have broad application prospects in industrial production.
关 键 词:图像处理 语义分割 颜色识别 深度学习 注意力机制
分 类 号:TG456.7[金属学及工艺—焊接] TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151