检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阮惠华 张钧民 许剑辉 戴晓爱[3] RUAN Huihua;ZHANG Junmin;XU Jianhui;DAI Xiaoai(Guangdong Meteorological Observation Data Center,Guangzhou 510641,China;Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System/Guangdong Open Laboratory of Geospatial Information Technology and Application/Guangzhou Institute of Geography,Guangdong Academy of Sciences,Guangzhou 510070,China;School of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China)
机构地区:[1]广东省气象探测数据中心,广东广州510641 [2]广东省科学院广州地理研究所/广东省遥感与地理信息应用重点实验室/广东省地理空间信息技术与应用公共实验室,广东广州510070 [3]成都理工大学地球科学学院,四川成都610059
出 处:《热带气象学报》2023年第3期300-312,共13页Journal of Tropical Meteorology
基 金:广东省省级科技计划项目(2018B020207012);国家自然科学基金(41901371)共同资助。
摘 要:以广东省北部山区2018年汛期强降水时段4月23—28日龙舟水、5月7—11日龙舟水和9月16—17日台风“山竹”3次典型暴雨过程的逐时降水为研究对象,研究基于XGBoost算法与地统计学理论的地面观测-前两个时刻逐时降水-雷达-卫星遥感的多源逐时降水融合模型,充分考虑相邻时刻降水的时间相关性,得到空间分辨率为1 km的逐时降水融合数据。此外,分别利用XGBoost与随机森林(RF)算法进行不考虑降水时间相关性的地面观测-雷达-卫星遥感逐时降水融合对比试验,并对试验结果进行精度评价。结果表明:(1)在3次暴雨过程中,三种融合模型的逐时降水融合结果具有类似的空间分布;(2)与XGBoost和RF逐时降水融合结果相比,融合了降水时间相关性的逐时降水融合结果在不同暴雨过程的准确性均有明显改进,3次暴雨过程的决定系数(R2)平均提高了7.89%和23.27%;(3)XGBoost逐时降水融合模型的精度整体上优于RF逐时降水融合模型,3次暴雨过程的R2分别提高了7.1%、4.3%和31.4%。In this study,an hourly precipitation data fusion model was proposed based on the framework of XGBoost-based machine learning algorithm and geostatistical theory.The model integrated the multi-source hourly precipitation data,including gauge,radar,Integrated Multi-satellite Retrievals for GPM(IMERG),Global Satellite Mapping of Precipitation(GSMaP),and gridded precipitation data.The gridded precipitation data recorded in the previous two hours were analyzed to summarize the temporal correlation characteristics of precipitation in the proposed hourly precipitation data fusion model.The 1 km IMERG and GSMaP precipitation data were downscaled by using the area-to-point Kriging method.The proposed hourly precipitation data fusion model was built using hourly precipitation data from 200 rain gauges and tested with three regional rainstorm events occurred during April 23 to 28,May 7 to 11,and September 16 to 17,2018 in northern Guangdong.The results were compared with the results estimated from the XGBoost and Random Forest(RF)algorithms without considering the temporal correlation characteristics of precipitation.The results showed that:(1)For the three regional rainstorm events,the three models reported similar spatial distribution of hourly precipitation.(2)Compared with the XGBoost and RF models,the proposed model that integrated the temporal correlation of hourly precipitation data could significantly improve the accuracy of estimated precipitation data.(3)The XGBoost model showed better performance than the RF model in capturing the nonlinear relationship between gauge precipitation data and independent variables.
关 键 词:逐时降水 多源数据融合 时间相关性 XGBoost算法 地统计学
分 类 号:P413[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222