检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李少康 陈龙 陈辉[1,2] 管聪 LI ShaoKang;CHEN Long;CHEN Hui;GUAN Cong(Key Laboratory of High Performance Ship Technology of Ministry of Education,Wuhan University of Technology,Wuhan 430063,China;School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430063,China;Systems Engineering Research Institute,CSSC,Beijing 100094,China)
机构地区:[1]武汉理工大学高性能船舶技术教育部重点实验室,武汉430063 [2]武汉理工大学船海与能源动力工程学院,武汉430063 [3]中国船舶集团有限公司系统工程研究院,北京100094
出 处:《武汉理工大学学报(交通科学与工程版)》2023年第4期648-653,共6页Journal of Wuhan University of Technology(Transportation Science & Engineering)
基 金:国家重点研发计划项目(2019YFE0104600);国家自然科学基金(51909200)。
摘 要:文中提出一种基于格拉姆角场-卷积神经网络(GAF-CNN)的故障诊断方法.利用格拉姆角场将一维柴油机振动信号转化为二维图像,通过超参数寻优的方法确定CNN模型网络结构,通过Dropout技术和Adam优化器让模型更好更快地实现拟和,最终将二维图像导入训练好的CNN模型进行实验验证.结果表明:GAF-CNN对训练集样本和测试集样本的故障诊断率分别为100%和98%,与传统的CNN方法相比具有更高的准确率及稳定性.A fault diagnosis method based on Gram Angle Field Convolutional Neural Network(GAF-CNN)was proposed.One-dimensional diesel engine vibration signal was transformed into two-dimensional image by Gram angle field,and CNN model network structure was determined by super-parameter optimization method.Through Dropout technology and Adam optimizer,the model can be fitted better and faster,and finally the two-dimensional image was imported into the trained CNN model for experimental verification.The results show that the fault diagnosis rates of GAF-CNN for training set samples and test set samples are 100%and 98%respectively,which is more accurate and stable than the traditional CNN method.
分 类 号:U676.4[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91