检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毛传波 杨庆华[1] 蔡世波[1] 王志恒[1] MAO Chuanbo;YANG Qinghua;CAI Shibo;WANG Zhiheng(Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310023)
机构地区:[1]浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州310023
出 处:《高技术通讯》2023年第7期683-691,共9页Chinese High Technology Letters
基 金:国家重点研发计划(2018YFE0125600,2019YFB1311401);浙江省公益项目(LGG19E050023)资助。
摘 要:针对传统上基于运动想象的脑机接口系统在应用之前需要进行枯燥冗长的校准实验的问题,提出基于独立分量分析(ICA)和普鲁克分析的迁移学习算法。该算法采用独立分量分析对脑电信号进行空间滤波,对比应用多种对齐变换方法,实现对样本数据的平移和缩放。并提出欧氏空间下的旋转变换方法,以进一步匹配目标受试者与其他受试者的样本分布,实现有效的跨受试者和跨数据集的迁移学习。所提算法相较基于黎曼普鲁克分析的方法具有更好的分类性能以及计算效率,并在公共数据集PhysionetMI和BCIIV-2a上较传统机器学习算法将平均kappa值提高了约0.1和0.04。结果表明该方法能有效提高小样本下的分类正确率,这有助于降低对校准数据量的需求,从而减少校准实验的耗时。Aiming at the problem that the traditional brain-computer interface system based on motor imagery needs to perform a boring and lengthy calibration session before being used,a transfer learning algorithm based on independent component analysis(ICA)and Procrustes analysis is proposed.First,the electroencephalogram(EEG)signal is spatially filtered by independent component analysis,then a variety of alignment methods are used and compared with translate and scale the samples.And a rotation transformation method in Euclidean space is proposed to further match the data distribution of the target subject and other subjects,which helped to achieve effective transfer learning cross-subject and cross-dataset.The proposed method has better classification performance and computational efficiency than the method based on Riemannian Procrustes analysis,increasing the average kappa by 0.1 and 0.04 on the public dataset PhysionetMI and BCI-IV-2a compared with traditional machine learning algorithms.The results show that the method can effectively improve the classification accuracy under a small number of samples,which helps to reduce the demand for calibration data,thereby reducing the time required for the calibration session.
关 键 词:运动想象 脑机接口 独立分量分析(ICA) 普鲁克分析 迁移学习
分 类 号:TN911.7[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程] R318[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195