检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢敏[1,2] 贾玉璇[1] LU Min;JIA Yu-xuan(College of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China;The Key Laboratory of Smart Airport Theory and System,Civil Aviation Administration of China,Tianjin 300300,China)
机构地区:[1]中国民航大学计算机科学与技术学院,天津300300 [2]中国民用航空局民航智慧机场理论与系统重点实验室,天津300300
出 处:《计算机工程与设计》2023年第8期2459-2464,共6页Computer Engineering and Design
基 金:中央高校基本科研业务费专项资金基金项目(3122014D032)。
摘 要:针对现有机票销售模型忽视不同票价等级需求问题,考虑到机票需求的影响,提出一种多任务学习模型预测机票价格。在机票价格预测中引入辅助任务机票需求预测,建立多任务学习网络,通过共享相关任务在日、周、半月、月等水平上的多尺度需求特征,分析不同周期需求特征的影响。在六千万条记录的真实数据集上的实验结果表明,较之基准算法,该模型在准确率和F1分数方面提高了将近6%,验证了多任务学习模型的有效性。To solve the problem that the existing ticket pricing strategy ignores the demand for different fare classes,a multi-task learning model for airfare price prediction was proposed to consider the impact of ticket demand.The ticket demand prediction was introduced as an auxiliary task to build a multi-task learning network in airfare price prediction.The impact of different periodic demand characteristics was analyzed by sharing the multi-scale demand characteristics of related tasks at the daily,weekly,semi-monthly,and monthly levels.Multiple experiments were conducted on real-word dataset with sixty millions of records.The results show that the improvements over the baselines in terms of accuracy and F1-score are nearly 6%,verifying the effectiveness of the multi-task learning model.
关 键 词:机票价格预测 机票需求 多尺度需求特征 多任务学习 卷积神经网络 残差网络 分类器模型
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3