基于VDM-ISSA-LSSVM的云资源短期负载预测模型  被引量:3

Short Term Load Prediction Model for Cloud Resources Based on VMD-ISSA-LSSVM

在线阅读下载全文

作  者:杨哲兴 谢晓兰[1,2] 李水旺 YANG Zhexing;XIE Xiaolan;LI Shuiwang(College of Information Science and Engineering,Guilin University of Technology,Guilin 541004,Guangxi,China;Guangxi Key Laboratory of Embedded Technology and Intelligent Systems,Guilin University of Technology,Guilin 541004,Guangxi,China)

机构地区:[1]桂林理工大学信息科学与工程学院,广西桂林541004 [2]桂林理工大学广西嵌入式技术与智能系统重点实验室,广西桂林541004

出  处:《实验室研究与探索》2023年第6期117-124,共8页Research and Exploration In Laboratory

基  金:国家自然科学基金项目(62262011);广西自然科学基金项目(2021JJA170130)。

摘  要:准确预测云资源短期负载对提高云平台资源管理效率、保障云服务质量至关重要。针对传统模型在面对小样本、非线性云资源负载数据时预测精度不高,提出一种基于变分模态分解(VMD)和改进麻雀搜索算法(ISSA)优化最小二乘支持向量机(LSSVM)的云资源短期负载预测模型。将原始负载数据通过VMD分解成多个相对平稳的模态分量;对麻雀搜索算法进行优化,增强种群多样性,提高寻优性能和收敛速度。利用改进麻雀搜索算法优化LSSVM的关键参数,建立VMD-ISSA-LSSVM预测模型。利用Wikipedia网站的云资源负载数据进行仿真,结果表明,所提模型在预测精度上优于参照模型。Accurate prediction of short-term cloud resource load is crucial to improve the efficiency of cloud platform resource management and guarantee the quality of cloud services.Traditional prediction models have low prediction accuracy in facing small samples and nonlinear cloud resource load data,hence,a cloud resource short-term load prediction model based on variational modal decomposition(VMD)and improved sparrow search algorithm(ISSA)optimized least squares support vector machine(LSSVM)is proposed.Firstly,the original data are decomposed into multiple smooth modal components by VMD.Secondly,the sparrow search algorithm is optimized to enhance its population diversity and improve its optimal search performance and convergence speed.Finally,the key parameters of LSSVM are optimized using the improved sparrow search algorithm to establish the VMD-ISSA-LSSVM prediction model.Simulations are performed using cloud resource load data from Wikipedia Website,and the experimental results show that the model proposed in this paper outperforms the reference model in terms of prediction accuracy.

关 键 词:云计算 负载预测 麻雀搜索算法 变分模态算法 最小二乘支持向量机 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象