植物精气中萜类化合物分子结构与沸点模拟  

Terpenoids in Plant Essence:Molecular Structure and Boiling Point Simulation

在线阅读下载全文

作  者:高光芹[1] 茹广欣[2] 朱秀红[2] 黄家荣[2] 申文波 GAO Guangqin;RU Guangxin;ZHU Xiuhong;HUANG Jiarong;SHEN Wenbo(College of Science,Henan Agricultural University,Zhengzhou 450002;College of Forestry,Henan Agricultural University,Zhengzhou 450002)

机构地区:[1]河南农业大学理学院,郑州450002 [2]河南农业大学林学院,郑州450002

出  处:《中国农学通报》2023年第24期103-107,共5页Chinese Agricultural Science Bulletin

基  金:国家自然科学基金资助项目“基于炔烃的不对称铜催化的氧化反应研究”(22001059);河南省科技兴林项目“泡桐种质资源发掘与创新利用”(30602126)。

摘  要:为实现化合物分子结构、分子量与沸点之间复杂关系的精确模拟,以植物精气中36种萜类化合物为研究对象,用拓扑指数法量化分子结构,用人工神经网络构建非线性模型。研究结果表明:结构为2:15:1的人工神经网络模型MSBPT,其拟合准确度为96%,预测准确度为91%;引入分子量作为输入变量,对分子结构与沸点的关系具有加强作用。人工神经网络适应于萜类化合物分子结构与其沸点的复杂非线性关系建模和拟合、且预测准确度高;同时,基团贡献法具有广泛适应范围、拓扑指数法计算结果可靠,建议在林业、农业作进一步的深入研究。In order to accurately simulate the complex relationship between the molecular structure,molecular weight and boiling point of the compounds,36 terpenoids in plant essence were studied in this essay.The topological index method was used to quantify the molecular structure,and artificial neural networks were applied to construct nonlinear models.The results show that the fitting accuracy of MSBPT with a 2:15:1 structure is 96%,and the prediction accuracy is 91%.The relationship between molecular structure and boiling point is strengthened by introducing molecular weight as an input variable.The artificial neural network is suitable for modeling the complex nonlinear relationship between the molecular structure of terpenoids and their boiling points,with high fitting and prediction accuracy.At the same time,the group contribution method has a wide application range and the topological index method has reliable data,which should be further studied in the field of forestry and agriculture.

关 键 词:人工神经网络 萜类化合物 分子结构 拓扑指数 沸点 

分 类 号:S713[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象