检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李嘉新 侯进[2,3] 盛博莹 周宇航 LI Jiaxin;HOU Jin;SHENG Boying;ZHOU Yuhang(School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China;Laboratory of Intelligent Perception and Smart Operation and Maintenance,School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China;National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Southwest Jiaotong University,Chengdu 611756,China)
机构地区:[1]西南交通大学计算机与人工智能学院,成都611756 [2]西南交通大学信息科学与技术学院智能感知智慧运维实验室,成都611756 [3]西南交通大学综合交通大数据应用技术国家工程实验室,成都611756
出 处:《计算机工程》2023年第9期256-264,共9页Computer Engineering
基 金:国家重点研发计划(2020YFB1711902)。
摘 要:受遥感图像背景复杂、分辨率高、有效信息量少等因素影响,现有目标检测算法在检测小目标过程中存在错检、漏检等问题。提出基于YOLOv5的遥感小目标检测算法YOLOv5-RS。为有效减少图像中复杂背景和负样本的干扰,构建并行混合注意力模块,采用卷积替换全连接层和移除池化层的操作来优化注意力模块生成权重特征图的过程。为获取和传递更丰富且更具判别性的小目标特征,调整下采样倍数并在模型训练过程中增加小目标信息丰富的浅层特征,同时设计卷积与多头自注意力相结合的特征提取模块,通过对局部和全局信息进行联合表征以突破普通卷积提取的局限性,从而获得更大的感受野。采用EIoU损失函数优化预测框与检测框的回归过程,增强小目标的定位能力。在遥感小目标数据集上进行实验以验证该算法的有效性。实验结果表明,与YOLOv5s相比,该算法在参数量减少20%的情况下平均检测精度提升1.5个百分点,其中,小车类目标的平均检测精度提升3.2个百分点;与EfficientDet、YOLOx、YOLOv7相比,该算法能有效兼顾检测精度和实时性。In remote sensing imagery,the detection of small objects poses significant challenges due to factors such as complex background,high resolution,and limited effective information.Based on YOLOv5,this study proposes an advanced approach,referred to as YOLOv5-RS,to enhance small object detection in remote sensing images.The presented approach employs a parallel mixed attention module to address issues arising from complex backgrounds and negative samples.This module optimizes the generation of a weighted feature map by substituting fully connected layers with convolutions and eliminating pooling layers.To capture the nuanced characteristics of small targets,the downsampling factor is tailored,and shallow features are incorporated during model training.At the same time,a unique feature extraction module combining convolution and Multi-Head Self-Attention(MHSA)is designed to overcome the limitations of ordinary convolution extraction by jointly representing local and global information,thereby extending the model's receptive field.The EIoU loss function is employed to optimize the regression process for both prediction and detection frames to enhance the localization capacity of small objects.The efficacy of the proposed algorithm is verified via experiments on datasets comprising small target remote sensing images.The results show that compared with YOLOv5s,the proposed algorithm has an average detection accuracy improvement of 1.5 percentage points,coupled with a 20%reduction in parameter count.Particularly,the proposed algorithm's average detection accuracy of small vehicle targets increased by 3.2 percentage points.Comparative evaluations against established methodologies such as EfficientDet,YOLOx,and YOLOv7 underscore the proposed algorithm's capacity to adeptly balance the dual objectives of detection accuracy and real-time performance.
关 键 词:遥感小目标检测 改进YOLOv5 并行混合注意力 全局特征融合 损失函数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38