基于中医与营养学的健康饮食知识图谱构建  

Construction of a Dietary Health Knowledge Graph Based on the Integration of Traditional Chinese Medicine and Nutrition

在线阅读下载全文

作  者:黄贵臣 王勐 贺耀钦 HUANG Guichen;WANG Meng;HE Yaoqin(Anshan Iron and Steel Group Co.,Ltd.,Anshan Liaoning 114000,China;School of Computer&Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China)

机构地区:[1]鞍山钢铁集团有限公司,辽宁鞍山114000 [2]北京科技大学计算机与通信工程学院,北京100083

出  处:《信息与电脑》2023年第11期176-181,185,共7页Information & Computer

摘  要:导致亚健康的最主要因素是饮食。随着互联网的飞速发展,世界已经从信息缺乏的时代迈向信息过量的时代,互联网中充斥着各种饮食信息,但是大多较混杂,难以被有效利用。为了辅助用户正确选择饮食,文章结合权威的书籍和美食网站的开源知识构建了健康饮食知识图谱。该图谱不仅涵盖了大多数的现代营养学的知识,还涵盖了中医饮食学的知识,能够让亚健康人群从营养素的角度和个人体质的角度了解健康的饮食知识。文章首先采用自顶向下的方式构建知识图谱,利用本体的概念构建图谱模式层,其次利用知识抽取、融合构建数据层,最后利用Neo4j图数据库存储和可视化知识图谱。The main factor leading to sub-health is diet.With the rapid development of the Internet,the world has moved from an era of information scarcity to an era of information overload.The internet is filled with various dietary information,but most of them are mixed and difficult to effectively reference.In order to meet users’correct decision-making on diet,this thesis combines authoritative books and open-source knowledge from food websites to construct a knowledge graph of dietary health.This knowledge graph not only covers the majority of modern nutrition knowledge but also covers the knowledge of traditional Chinese medicine dietetics,enabling sub-healthy populations to jointly understand healthy dietary knowledge from the perspectives of nutrients and individual physique.This thesis constructs the knowledge graph from top to bottom,uses the concept of ontology to construct the knowledge graph pattern layer,and uses knowledge extraction and fusion to complete the construction of the knowledge graph data layer.Finally,the knowledge graph is stored and visualized using the Neo4j database.

关 键 词:健康饮食 本体 知识图谱 中医 现代营养学 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象