检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜浩晨 张小强[1,2,3] JIANG Hao-chen;ZHANG Xiao-qiang(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Chengdu 611756,China;National United Engineering Laboratory of Integrated and Intelligent Transportation,Chengdu 611756,China)
机构地区:[1]西南交通大学,交通运输与物流学院,成都611756 [2]综合交通大数据应用技术国家工程实验室,成都611756 [3]综合交通运输智能化国家地方联合工程实验室,成都611756
出 处:《交通运输工程与信息学报》2023年第3期86-97,共12页Journal of Transportation Engineering and Information
基 金:中国铁路南宁局集团有限公司科研计划项目(KYL202112-0200)。
摘 要:人工议价是当前网络货运平台的主要定价方式,但存在议价回合多、耗时及效率低下等弊端。为了弥补人工议价的不足,本文提出基于深度学习的动态价格预测模型。首先,结合历史订单数据和极端随机树特征选择的结果,对价格预测模型进行训练调优。其次,利用该模型对待定价订单的计划价格和实际价格进行预测,形成一个价格区间,制定实时价格策略,为网络货运平台的定价决策提供依据。最后,论文以顺丰网络货运平台为例,选取了8种经典机器学习模型作为对比模型,经对比发现本文所建的模型R2-score达到98.24%,相较于与其他模型有更高的预测准确度,并能为平台提供多样化的动态调价策略。实验结果表明:该深度学习模型定价预测更精准、动态定价能力更强,能够适应复杂的现实交易情况,从而可提高网络货运平台在公路货运市场的竞争力。Manual bargaining is currently the main pricing method for online freight platforms,but there are drawbacks including multiple rounds of bargaining,and time-consuming and inefficient negotiations.To compensate for the shortcomings of manual bargaining,this paper proposes a dynamic price prediction model based on deep learning.First,the price prediction model is trained and optimized using historical order data and the results of extreme random tree feature selection.Next,the model is used to predict the planned and practical prices of pending orders,formulating a price range and establishing a real-time pricing strategy to provide a basis for pricing decisions on the online freight platform.Finally,the SF Express online freight platform is considered as a case study and 8 classic machine learning models are selected for comparison.As a result,the R2-score of the model proposed in this paper reaches 98.24%,with higher prediction accuracy than other models,and the model can provide diversified dynamic pricing strategies for the platform.Further,experimental re-sults show that the deep learning model has more accurate pricing prediction and stronger dynamic pricing capabilities,which can adapt to complex real-world transaction situations and improve the competitiveness of the online freight platform in the road freight market.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.162.15