检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王豪威 屈文飞 万永安 裴元锐 WANG Haowei;QU Wenfei;WAN Yong’an;PEI Yuanrui(Zhejiang Windey Co.,Ltd.,Hangzhou 310013,China;Key Laboratory of Wind Power Technology of Zhejiang Province,Hangzhou 310000,China)
机构地区:[1]浙江运达风电股份有限公司,浙江杭州310013 [2]浙江省风力发电技术重点实验室,浙江杭州310000
出 处:《水电与新能源》2023年第9期20-23,共4页Hydropower and New Energy
摘 要:根据火电站、风电场和光伏电站的动态响应特性,搭建了基于模型预测控制的多源自动发电控制系统模型,并利用粒子群优化算法优化区域内系统的动态响应调节性能。案例分析表明,与优化前相比,多源自动发电控制系统模型能提高系统的动态响应能力,减少区域控制总偏差,减少区域“弃风”、“弃光”,让风光新能源充分发挥调节潜力。According to the dynamic response characteristics of thermal power stations,wind farms,and photovoltaic power stations,a multi-source automatic power generation control model is constructed based on model predictive control.Then,the particle swarm optimization is used to optimize the dynamic response regulation performance of the system in the region.Case study shows that the multi-source automatic power generation control model can improve the dynamic response performance of the system,reduce the total regional control deviation and the abandoned wind and light,and fully utilize the regulatory potential of the renewable energies such as wind power and photovoltaic power.
关 键 词:可再生能源 模型预测控制 自动发电控制 粒子群优化算法
分 类 号:TM61[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.45.232