基于深度学习U-Net网络的地震层位解释方法  被引量:8

Seismic horizon interpretation method based on deep learning U-Net network

在线阅读下载全文

作  者:朱振宇 黄小刚 丁继才 王清振 李超 ZHU ZhenYu;HUANG XiaoGang;DING JiCai;WANG QingZhen;LI Chao(CNOOC Research Institute Co.,Ltd.,Beijing 100028,China)

机构地区:[1]中海油研究总院有限责任公司,北京100028

出  处:《地球物理学进展》2023年第4期1722-1738,共17页Progress in Geophysics

摘  要:地震资料解释是油气勘探的关键环节之一,其成果直接服务于油气田的勘探开发.随着油田精细化勘探的需求不断加深,地震解释工作量逐年增加.常规的地震层位自动解释方法在面对复杂构造时存在解释精度较差,工作量大等问题,因此,为解决上述问题,本文创新性地将一种基于图像分割技术的U-Net网络应用于地震层位解释工作中.通过输入地震数据及少量人工解释的标签数据,利用该网络进行监督学习,多套层位同时训练建模,实现地震层位自动识别,并应用于海外Parihaka地震三角洲沉积地区和国内海域工区.实际工区应用表明该技术在多层识别模型中的性能稳定,多层同时识别准确率达到90%以上,与常规地震层位自动解释方法相比,基于U-Net卷积神经网络的智能算法在小层、弱层识别方面优势明显,同时具有较高的效率与准确性.Seismic data interpretation is one of the key processes in oil and gas exploration,and its results directly serve the exploration and development of oil and gas fields.With the ever-increasing demand for refined oilfield exploration,the workload of seismic interpretation is increasing year by year.When faced with complex structures,there are some problems with the conventional automatic tacking techniques of horizon interpretation,such as poor interpretation accuracy and large workload.Therefore,in order to solve the above problems,this paper innovatively applies a U-Net network based on image segmentation technology to horizon interpretation.By inputting seismic data and a small amount of manually interpreted label data,the network is used for supervised learning,and multiple sets of horizons are trained and modeled at the same time to realize the automation of horizon interpretation.The technology is applied to the overseas Parihaka seismic delta depositional area and the domestic sea area.The application in the field data shows that the performance of this technology is stable,and the accuracy of multi-layer simultaneous recognition is more than 90%.Compared with the conventional automatic tacking techniques of horizon interpretation,the proposed method of intelligent algorithm based on U-Net convolution neural network has obvious advantages in the recognition of small and weak layers,and has higher efficiency and accuracy.

关 键 词:层位解释 深度学习 多层识别 卷积神经网络 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象