检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢从贵 XIE Conggui(CISDI Information Technology(Chongqing)Co.,Ltd,Chongqing 401120,China)
机构地区:[1]中冶赛迪信息技术(重庆)有限公司,重庆4011201
出 处:《常熟理工学院学报》2023年第5期29-35,共7页Journal of Changshu Institute of Technology
摘 要:针对现有网络攻击识别方法仅学习独立样本实例特征而缺少类别信息指导的问题,提出了一种融合实例和聚类信息的稀疏自编码特征学习的网络攻击行为识别方法FIC-SAE.每次迭代过程中,利用独立样本构造实例级的稀疏自编码网络误差项、网络权重惩罚项和稀疏项损失函数,同时每批样本进行K-mean聚类划分以构造聚类级的稀疏自编码网络交叉熵损失函数.NSL-KDD和CICIDS2017数据集上的实验结果表明,本文方法FIC-SAE在平均准确率、召回率、查全率和F_(1)分数等4个指标上均优于其他几个自编码器方法.To address the issue that current network attack recognition methods come only with the learning features from the independent sample instances yet without the guidance of category information,we propose a new network attack behavior recognition method FIC-SAE based on the Sparse Auto-Encoders(SAE)to learn the features from the instance and clustering information.In each iteration,we construct the instance-level error term,network weight penalty term and sparse term loss function of the SAE from the independent samples.At the same time,the samples of each batch are grouped with the K-mean clustering to construct the cross-entropy loss function of the SAE for the clusters.Experimental results on NSL-KDD and CICIDS2017 datasets show that our method promises better average accuracy,recall,and F_(1)score than those of other methods with the feature learned from the samples only based on the AE.
关 键 词:稀疏自动编码 网络入侵检测 损失函数 K-mean聚类
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7