检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢文鑫 史纪广 李宙童 黄启俊[1] XIE Wenxin;SHI Jiguang;LI Zhoutong;HUANG Qijun(School of Physics and Technology,Wuhan University,Wuhan 430072,China;Huangpu Branch of Shanghai Ninth People’s Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200011,China)
机构地区:[1]武汉大学物理科学与技术学院,湖北武汉430072 [2]上海交通大学医学院附属第九人民医院黄浦分院,上海200011
出 处:《电子设计工程》2023年第19期15-19,24,共6页Electronic Design Engineering
基 金:国家自然科学基金项目(81971702,61874079)。
摘 要:针对实时心电数据的自动诊断,文中设计了一种适合硬件实现的轻量化残差神经网络结构,并将其实现为可用于便携式心电检测系统的硬件IP。通过在FPGA平台上搭建验证系统,完成了该硬件IP的部署和验证。经过实测心电数据验证,硬件IP模块可实现正常心电图(N)、房性早搏(A)、心动过速(T)、心动过缓(B)四种心电信号的自动分类。与嵌入式软件实现方式相比,硬件IP模块准确率达到99.6%,计算速度提升了2.07倍,可以满足实时性要求,特别适合应用于便携式心电检测系统。For automatic diagnosis of real-time ECG data,this paper designs a lightweight residual neural network structure suitable for hardware implementation and implements it as a hardware IP that can be used in portable ECG detection systems.The deployment and verification of this hardware IP is completed by building a verification system on an FPGA platform.After the validation of the measured ECG data,the hardware IP module can realize the automatic classification of four ECG signals:normal ECG(N),atrial premature beats(A),tachycardia(T),and bradycardia(B).Compared with the embedded software implementation method,the hardware IP module achieves 99.6%accuracy and 2.07 times higher calculation speed,which can meet the real-time requirements and is especially suitable for application in portable ECG detection systems.
分 类 号:TN911.72[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116