基于剪切波变换和拟合优度检验的遥感图像去噪  被引量:5

Remote Sensing Image Denoising Based on Shearlet Transform and Goodness of Fit Test

在线阅读下载全文

作  者:成丽波[1] 陈鹏宇 李喆 贾小宁 CHENG Libo;CHEN Pengyu;LI Zhe;JIA Xiaoning(School of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022,China)

机构地区:[1]长春理工大学数学与统计学院,长春130022

出  处:《吉林大学学报(理学版)》2023年第5期1187-1194,共8页Journal of Jilin University:Science Edition

基  金:国家自然科学基金(批准号:12171054);吉林省教育厅科学技术研究项目(批准号:JJKH20230788KJ).

摘  要:针对遥感图像中的高斯白噪声,提出一种基于剪切波变换和拟合优度检验的遥感图像去噪算法.首先,将含噪遥感图像通过剪切波变换多尺度分解得到不同子带,利用剪切波域下高斯白噪声系数的统计关系估计去噪阈值;其次,计算高频子带的拟合优度检验统计量,将统计量与去噪阈值相比较进行去噪;最后,对系数矩阵进行剪切波逆变换重建去噪图像.仿真实验结果表明,该算法能有效去除遥感图像中的高斯噪声,保持图像的边缘纹理信息,并且在不同噪声水平下,均获得了较高的峰值信噪比,其中与剪切波阈值去噪算法相比平均提高0.33 dB.Aiming at white Gaussian noise in remote sensing images,we proposed a remote sensing images denoising algorithm based on shearlet transform and goodness of fit test.Firstly,the noisy remote sensing image was decomposed into different sub-bands through shearlet transform at multiple scales,and the denoising threshold was estimated using the statistical relationship of white Gaussian noise coefficients in the shearlet domain.Secondly,we calculated the goodness of fit test statistics of high-frequency sub-bands and compared it with the denoising threshold for denoising.Finally,shearlet inverse transform on the coefficient matrix was performed to reconstruct the denoised images.The simulation experiment results show that this algorithm can effectively remove Gaussian noise in remote sensing images,maintain the edge texture information of images,and achieve high peak signal-to-noise ratio under different noise levels,among which the average increase is 0.33 dB compared with the shearlet threshold denoising algorithm.

关 键 词:遥感图像 剪切波变换 拟合优度检验 图像去噪 

分 类 号:TP341.4[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象