检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张聪 林菲[1] ZHANG Cong;LIN Fei(School of Computer Science,Hangzhou Dianzi University,Hangzhou310018,China)
机构地区:[1]杭州电子科技大学计算机学院,浙江杭州310018
出 处:《智能物联技术》2023年第2期39-44,共6页Technology of Io T& AI
基 金:杭州电子科技大学2022年度高等教育教学改革研究项目(SYYB202208)。
摘 要:针对人工智能实验教学存在的算力资源不足、实验环境搭建复杂等问题,本文基于CPU+GPU协同计算架构,利用Containerd和Kubernetes构建底层容器云基础设施,并在其上部署可定制化的实验环境镜像,设计和实现功能模块,从而形成人工智能实验平台。本文重点阐述了Kubernetes集群搭建、Jupyter Hub部署以及实验镜像制作方法等,可为多层次实验案例灵活提供Pytorch、TensorFlow等不同的实验运行环境。通过两个深度学习实验,证明了本文构建的平台具备良好的实用性和可行性,是一种有效的人工智能实验教学解决方案。To address the issues of insufficient computing resources and complex experimental environment setup in artificial intelligence(AI)experimental teaching,a CPU+GPU collaborative computing architecture was employed to construct a container-based cloud infrastructure using Containerd and Kubernetes.Customizable experimental environment mirrors are deployed on top of the infrastructure,and functional modules are designed and implemented to form an AI experimental platform.The emphasis was placed on explaining the construction of Kubernetes clusters,the deployment of Jupyter hub,and the method for creating experimental environment mirrors,which can flexibly provide different experimental running environments such as Python and TensorFlow for multilevel experimental cases.The platform's practicality and feasibility are demonstrated through two deep learning experiments,making it an effective solution for AI experimental teaching.
关 键 词:容器云 人工智能实验教学 Containerd Kubernetes 实验镜像
分 类 号:TP393.09[自动化与计算机技术—计算机应用技术] G642.0[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222