检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹义亲[1] 符杨逸 饶哲初 CAO Yiqin;FU Yangyi;RAO Zhechu(School of Software,East China Jiaotong University,Nanchang 330013,China)
出 处:《计算机工程与应用》2023年第18期179-189,共11页Computer Engineering and Applications
基 金:国家自然科学基金(61861016);江西省科技支撑计划重点项目(20161BBE50081)。
摘 要:基于深度学习的图像去噪方法,大多没有充分利用不同层次的特征信息,通道合并时都是直接在通道维度上对特征图进行拼接,并没有考虑到浅层与深层卷积特征各自的重要性。为解决上述问题,提出一种加权密集扩张卷积连接网络模型,用于去除图像的随机脉冲噪声。通过使用不同扩张因子的扩张卷积来丰富浅层特征图的多尺度特征信息;考虑到浅层与深层卷积特征各自的重要性,将原始密集块进行改进,采用加权密集连接结构,并使用扩张卷积提高感受野;采用跳跃连接,将浅层的多尺度特征信息和不同加权密集扩张卷积块的特征信息进行融合,充分利用深层卷积特征和浅层卷积特征信息实现随机脉冲噪声的复原。实验结果表明,所提模型的去噪效果更加突出。Among image denoising methods based on deep learning,most of them do not make full use of feature infor-mation at different levels,and splicing feature graphs directly on channel dimensions during channel merging,without considering the importance of both shallow and deep convolution features.In order to solve the above problems,this paper proposes a weighted dense dilated convolutional connection network to remove random impulse noise in images.Firstly,the multi-scale feature information of the shallow feature map is enriched by dilation convolution using different expan-sion factors.Secondly,considering the importance of both shallow and deep convolution features,the original dense block is improved,the weighted dense connection structure is adopted,and the expansion convolution is used to effectively increase the receptive field.Finally,jump connections are used to fuse the shallow multi-scale feature information with the feature information of different weighted dense dilated convolution blocks,and make full use of the high-level and low-level feature information to recover random impulse noise.The experimental results show that the proposed algo-rithm has a more prominent denoising.
关 键 词:图像去噪 深度学习 密集连接 扩张卷积 权重 随机脉冲噪声
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171