检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李煜彦[1] 何东林[1] LI Yuyan;HE Donglin(School of Mathematics and Information Sciences,Longnan Teachers College,Longnan 742500,China)
机构地区:[1]陇南师范高等专科学校数学与信息科学学院,甘肃陇南742500
出 处:《南昌大学学报(理科版)》2023年第4期328-331,共4页Journal of Nanchang University(Natural Science)
基 金:甘肃省高等学校创新能力提升项目(2019B-224);甘肃省高等学校创新基金项目(2021B-364).
摘 要:提出了t-补子模的概念,它与t-闭子模是等价的。讨论了t-extending模的直和因子的内射性,研究了t-extending模的直和,证明了M=i∈I M_(i)(|I|≥2)是t-extending模的等价条件有以下两个:(1)存在i≠j∈I,使得对M的任意t-闭子模K,若K∩M_(i)≤Z_(2)(M)或K∩M_(j)≤Z_(2)(M),则K是M的直和因子;(2)存在i≠j∈I,使得M_(j)或M_(i)在M中的任意t-补是t-extending模且是M的直和因子。The concept of t-complement submodule was introduced,and it was equivalent to t-closed submodule.The injectivity of direct summand of t-extendingmodule was discussed,and the direct sums of t-extending module was studied.It was proved that there are two equivalent characterizations which M=i∈IM_(i)(|I|≥2)is t-extending modules:(1)There exist i≠j in I such that every t-closed submodule K of M with K∩M_(i)≤Z_(2)(M)or K∩M_(j)≤Z 2(M)is a direct summand;(2)There exist i≠j in I such that every t-complement of M_(i) or M_(j) in M is a t-extending module and a direct summand of M.
关 键 词:t-本质子模 t-补子模 t-extending模 直和
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.152.51