检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梅晴航 张朝[1] 骆玉川 吴华清 陶福禄[3] MEI Qinghang;ZHANG Zhao;LUO Yuchuan;WU Huaqing;TAO Fulu(Academy of Disaster Reduction and Emergency Management Ministry of Emergency Management&Ministry of Education,School of National Safety and Emergency Management,Beijing Normal University,Beijing 100875,P.R.China;Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station,School of Geographical Sciences,Southwest University,Chongqing 400715,P.R.China;Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,P.R.China)
机构地区:[1]北京师范大学,国家安全与应急管理学院,应急管理部&教育部减灾与应急管理研究院,北京100875 [2]西南大学地理科学学院,重庆金佛山喀斯特生态系统国家野外科学观测研究站,重庆400715 [3]中国科学院地理科学与资源研究所,中国科学院陆地表层格局与模拟重点实验室,北京100101
出 处:《中国科学数据(中英文网络版)》2023年第3期299-314,共16页China Scientific Data
基 金:国家重点研发计划(2020YFA0608201);国家自然科学基金(41977405、42061144003)。
摘 要:我国三大作物(稻谷、玉米和小麦)种植面积均位于世界前列,获得与县级统计年鉴一致的三大作物种植面积空间分布数据对于农业政策制定和灾害风险防范至关重要。然而,目前关于我国三大作物种植面积的可用数据集较少,且已有公开数据集与统计年鉴差异较大、可用年代有限。本数据集利用了一种融合多源数据的作物面积制图方法,首先基于GLASS叶面积指数(LAI)产品提取三大作物的关键物候,初步确定作物的大致空间分布,并参考县级统计数据制定格点选择规则,逐步分配作物像元,最终生成了中国2009–2015年1 km空间分辨率的三大作物种植面积第二代产品(ChinaCropArea1kmV2)。玉米、稻谷、小麦产品与县级统计数据一致性R2为0.98、0.89和0.82,基于样点验证的精度依次为0.85、0.86和0.93,且第二代产品与统计数据的一致性均高于已有产品精度。本数据集的生成方法能在大范围区域快速实现农作物制图,且数据集能与县级统计年鉴保持高度一致。本数据产品有助于为农业生产研究和科学决策提供关键的数据基础。The planting area of three staple crops(rice,maize and wheat)in China ranks among the highest in the world.Developing the planting area maps of three staple crops consistent with the county-level statistical data for agricultural policy formulation and disaster risk prevention.However,there is a scarcity of available planting area datasets of for these three crops in China,and the existing public datasets limited data for only a few years,often exhibit significant disparities from the statistical data.This dataset was established using a crop mapping method based on multi-source data.Firstly,we determined the rough spatial distribution of crops by extracting key phenology of these three crops based on GLASS leaf area index(LAI)products.Then,we filtered the crop pixels gradually by the optimization rules referring to county-level statistical data.Finally,we obtained a dataset of the planting areas of three staple crops with a spatial resolution of 1 km in China during 2009–2015(ChinaCropArea1kmV2).The R2(consistency with county-level statistical data)values of maize,rice and wheat products are 0.98,0.89 and 0.82 respectively,and the accuracies of mapping based on point verification reached 0.85,0.86 and 0.93 respectively.The consistency between the second generation products and statistical data is higher than the accuracy of existing products.The presented method for the production of this dataset can rapidly enables rapid and accurate crop mapping over large areas while maintaining a high level of consistency with county-level statistical yearbooks.The production of this dataset is helpful to provide a key data base for agricultural production research and scientific decision making.
关 键 词:三大作物 GLASS LAI 统计数据 种植面积
分 类 号:S127[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33