检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李依洋 曾才斌 黄在堂 LI Yiyang;ZENG Caibin;HUANG Zaitang(School of Mathematics,South China University of Technology,Guangzhou Guangdong 510640,China;School of Mathematics and Statistics,Nanning Normal University,Nanning Guangxi 530023,China)
机构地区:[1]华南理工大学数学学院,广东广州510640 [2]南宁师范大学数学与统计学院,广西南宁530023
出 处:《广西师范大学学报(自然科学版)》2023年第5期61-68,共8页Journal of Guangxi Normal University:Natural Science Edition
基 金:国家自然科学基金(12271177,12061049)。
摘 要:大多数恒化器模型忽略了微生物的壁附着行为,并且对随机生物系统的记忆效应研究较少。基于此,本文研究由分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子的存在性。首先,引入合适的停时序列,将连续随机动力系统转化为一序列小区间上的离散随机动力系统;然后,在小的闭球内构造随机集,并证明其紧性、缓增性、吸引性,由此证明所生成随机动力系统拉回吸引子的存在性;最后,通过数值分析验证所得理论结果的正确性和有效性。Most chemostat models ignore the wall attachment of microorganisms and little seems to be known about the memory effect on stochastic biological systems.This paper is devoted to study the existence of random attractors for chemostat models with wall attachment driven by fractional Brownian motion.Firstly,a suitable stopping time sequence is established and the continuous random dynamical system is divided into discrete random dynamical systems on the small stopping time interval.Then the random set is constructed over a closed ball and its compactness,temperedness and attractivity are proved.Moreover,the required results on the existence of random attractor for generated random dynamical system are guaranteed.Finally,numerical simulations are carried out to verify the correctness and effectiveness of the theoretical results obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.90.244