基于卷积神经网络的Mg-9Gd-Y-Zn-Zr镁合金力学性能预测  被引量:1

Prediction of Mechanical Properties of Mg-9Gd-Y-Zn-Zr Alloy Based on Convolutional Neural Network

在线阅读下载全文

作  者:柴晶 程眉[1] 张治民[1] CHAI Jing;CHENG Mei;ZHANG Zhimin(School of Materials Science and Engineering,North University of China,Taiyuan 030000,China)

机构地区:[1]中北大学材料科学与工程学院,山西太原030000

出  处:《热加工工艺》2023年第12期86-90,94,共6页Hot Working Technology

基  金:国家自然科学基金资助项目(52075501)。

摘  要:对不同工艺的变形稀土镁合金样品进行了系列拉伸试验,借助卷积神经网络构建模型训练,提出Mg-9GdY-Zn-Zr合金力学性能的预测模型。结果表明,测试集抗拉强度、屈服强度的相对平均误差分别为3.25%和4.77%。随机取3个Mg-9Gd-Y-Zn-Zr合金试样再次验证该模型预测力学性能,误差均小于5%,表明该卷积神经网络模型能够以较高的精度预测力学性能。细晶强化对3个试样强化的贡献分别为68.8、88.4、98.1MPa,位错强化的贡献分别为17.62、22.36、22.06MPa。A series of tensile tests were carried out for deformed rare earth magnesium alloy samples with different processes,and a prediction model of mechanical properties of Mg-9Gd-Y-Zn-Zr alloy was put forward with the help of convolutional neural network model training.The results show that,the relative average errors of tensile strength and yield strength of the test set are 3.25%and 4.77%respectively.Three samples of Mg-9Gd-Y-Zn-Zr alloy are randomly selected to verify the predicted mechanical properties of the model again,and the errors are all within 5%,indicating that the convolutional neural network model can predict the mechanical properties with high accuracy.The contribution of fine grain strengthening to the strengthening of the three samples is 68.8 MPa,88.4 MPa and 98.1 MPa,respectively,and the contribution of dislocation strengthening is 17.62 MPa,22.36 MPa and 22.06 MPa respectively.

关 键 词:Mg-9Gd-Y-Zn-Zr 卷积神经网络 力学性能 微观组织 

分 类 号:TG146.22[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象