检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝琨 韩冰 李志圣 王传启 HAO Kun;HAN Bing;LI Zhisheng;WANG Chuanqi(School of Computer and Information Engineering,Tianjin Chengjian University,Xiqing Tianjin 300384;Tianjin Keyvia Electric Co.,Ltd,Xiqing Tianjin 300384)
机构地区:[1]天津城建大学计算机与信息工程学院,天津西青区300384 [2]天津凯发电气股份有限公司,天津西青区300384
出 处:《电子科技大学学报》2023年第5期728-738,共11页Journal of University of Electronic Science and Technology of China
基 金:国家自然科学基金(61902273);天津自然科学基金面上项目(18JCYBJC85600)。
摘 要:针对数字仪表图像噪声大、图像特征信息不足导致图像识别准确率低的问题,提出了一种基于卷积递归神经网络结合投影阈值分割和数字序列校正的高噪数字仪表图像识别方法。首先,用投影阈值分割二值化算法对图像进行预处理:使用垂直投影法将图像划分为不同区域,根据不同区域的噪声强度自适应设定二值化阈值,对图像进行二值化处理,降低噪声;其次,根据图像之间数字规律变化特点,利用数字序列校正算法将单个数字识别转换为数字序列识别,通过对比不同数字序列的识别概率得出识别结果,解决单张图像特征信息不足导致识别准确率低等问题。实验结果表明,在高噪声数据集上,相较于卷积递归神经网络模型,提出的高噪声数字仪表识别模型在准确率方面提高了约61.95%,达到93.58%。To solve the problem of low recognition accuracy due to high noise and insufficient feature information of digital instrument images,this paper proposes an image recognition method of high noise digital instrument based on convolution recursive neural network combining projection threshold segmentation and number sequence correction.Firstly,the projection threshold segmentation binarization algorithm is proposed to preprocess the image.The vertical projection method is used to divide the image into different regions,and the binarization threshold is set adaptively according to the noise intensity of different regions to binarization the image and reduce the noise.Secondly,according to the changing characteristics of the number rules between images,the number sequence correction algorithm is used to transform a single number recognition into a number sequence recognition,and the recognition result is obtained by comparing the recognition probability of different number sequences,so as to solve the problem of low recognition accuracy caused by insufficient feature information of a single image.The experimental results show that,compared with the convolutional recursive neural network model,the accuracy of the high-noise digital instrument recognition model proposed in this paper is improved on the high-noise data set by about 61.95%,reaching 93.58%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.169.109